
FLEXI Documentation
Release 24.10

Institute for Aerodynamics
and Gas Dynamics (University of Stuttgart)

Feb 09, 2025

USER GUIDE

1 Quick Start Guide 3
1.1 Installation and Setup . 3
1.2 Mesh Generation . 4
1.3 Running FLEXI . 4
1.4 Tools . 4

2 Installation 5
2.1 Prerequisites . 5
2.2 Obtaining the Source Code . 6
2.3 Compiling the Code . 7
2.4 Running the Code . 7

3 Code Overview 9
3.1 Feature List . 9
3.2 Compiler Options . 11

4 Workflow 13
4.1 Mesh Generation using HOPR . 13
4.2 Build Configuration . 14
4.3 Parameter File . 15
4.4 Running the Simulation . 18
4.5 Test Case Environment . 19
4.6 Post Processing . 20

5 Tutorials 23
5.1 Linear Scalar Advection-Diffusion Equation . 23
5.2 Freestream . 29
5.3 Convergence Test . 32
5.4 Lid-driven Cavity . 36
5.5 Taylor Green Vortex . 50
5.6 SOD Shock Tube . 56
5.7 Double Mach Reflection . 59
5.8 Plane Turbulent Channel Flow . 64
5.9 Flow Around a Cylinder . 69
5.10 Flow Around a NACA0012 Airfoil . 73

6 Tools Overview 85
6.1 POSTI Tools . 85

7 Parameter File 89

i

Bibliography 97

ii

FLEXI Documentation, Release 24.10

FLEXI is a high-order numerical framework for solving PDEs, with a special focus on Computational
Fluid Dynamics. FLEXI is based on the Discontinuous Galerkin Spectral Element Method (DGSEM),
which allows for high-order of accuracy and fully unstructured hexahedral meshes. The solver is par-
allelized very efficiently for large-scale applications and scales to 500,000+ cores. Moreover, FLEXI
comes with a capable pre- and post-processing suite that enables complex simulation setups up to the
finished visualization.

FLEXI has been developed by the Numerics Research Group (NRG) founded by Prof. Claus-Dieter
Munz and currently lead by Prof. Andrea Beck at the Institute of Aerodynamics and Gas Dynamics at
the University of Stuttgart, Germany.

You can find detailed installation instructions, the extensive documentation and several tutorial cases for
FLEXI here.

FLEXI is Copyright (C) 2016, Prof. Claus-Dieter Munz and is released under the GNU General Public
License v3.0. For the full license terms see the included license file.

Numerous people have worked on and with FLEXI over the last years. We would like to thank all these
contributors for their efforts they spent on building FLEXI.

In case you have questions regarding FLEXI or want to contribute yourself by either reporting bugs,
requesting features or adding something different to the project, feel free to open an issue or pull request.

USER GUIDE 1

https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/index.html
https://numericsresearchgroup.org/flexi_index.html

FLEXI Documentation, Release 24.10

2 USER GUIDE

CHAPTER

ONE

QUICK START GUIDE

This quick start guide allows for a fast installation and setup of FLEXI without diving into the general
details of the framework, compile options and features. Further information and detailed descriptions
are available by following the indicated references.

1.1 Installation and Setup

FLEXI is free and open source (GPLv3). The current version of the code-framework is available online
and can be acquired from the GitHub repository by either cloning it or downloading the compressed
folder, see Obtaining the Source Code.

FLEXI requires the following packages to be installed on the system:

• git

• CMake

• Fortran and C/C++ compilers (GNU compilers recommended)

• MPI libraries (OpenMPI recommended)

• LAPACK/OpenBLAS

• HDF5

• FFTW

LAPACK/OpenBLAS, HDF5 and FFTW can be automatically installed by enabling the corresponding
compiler options in the CMake configuration.

FLEXI is compiled using CMake. For a compilation in default configuration use:

mkdir build
cmake -B build
cmake --build build

Custom configurations can be generated with

ccmake -B build

including the installation of the third-party packages mentioned above (LAPACK/OpenBLAS, HDF5,
FFTW), see section compiler options for a detailed list. The executables will be generated in ./build/
bin/.

3

https://github.com/flexi-framework/flexi.git

FLEXI Documentation, Release 24.10

1.2 Mesh Generation

For the generation of high-order meshes the standalone mesh generator HOPR is required, creating
FLEXI compatible mesh files in HDF5 format. Simple, structured meshes can be directly generated in
HOPR using the integrated mesh generator, while the processing of complex geometries can be a based
on external meshes in CGNS or GMSH format. In any case, a parameter file for the mesh generation and
modification is required. HOPR is available on GitHub and can be compiled using CMake or by simply
downloading the provided AppImage. For an in-depth description we refer to the HOPR documentation.

1.3 Running FLEXI

FLEXI can be run by executing the generated binary in the build folder $FLEXIROOT/build/bin/
flexi and providing a parameter file with the simulation-specific definitions. The feature list provides an
overview of the various features implemented in FLEXI, while section parameter file contains all options
and a short description. For the definition of the initial and boundary conditions we refer to sections
Initial Conditions and Boundary Conditions, respectively. Optionally, simulations can be restarted from
an existing state file (i.e. volume solution) by appending it to the argument vector:

flexi parameter_flexi.ini [Restart_State.h5]

Further details concerning the capabilities of FLEXI and the application to small testcases, including
e.g., the flow around a NACA0012 airfoil, are included in the tutorials.

1.4 Tools

FLEXI comes with a comprehensive postprocessing toolchain, such as e.g. the interpolation between
different meshes, the time averaging of solution files, and the animation. Most importantly, it includes
the posti_visu tool to convert the solution files from the custom h5 format to vtu files readable by
ParaView, as covered in the workflow section.

4 Chapter 1. Quick Start Guide

https://github.com/hopr-framework/hopr/releases
https://hopr.readthedocs.io/en/latest/

CHAPTER

TWO

INSTALLATION

2.1 Prerequisites

Generally, FLEXI requires the following packages:

• git

• CMake

• Fortran and C/C++ compilers (GNU compilers recommended)

• MPI libraries (OpenMPI recommended)

• ParaView

• LAPACK/OpenBLAS1

• HDF51

• FFTW1

2.1.1 Installing the Dependencies from the Package Repositories

FLEXI has been tested on various Linux distributions, including Ubuntu and Debian, as well as Open-
SUSE, CentOS and Fedora. The required packages for DEB-based and RPM-based Linux distributions
can be obtained from the apt and the dnf environment, respectively. Refer to Table 2.1 for the package
names.

Table 2.1: Package names for Linux distributions

Package Debian / Ubuntu RHEL / Fedora
Installation Command sudo apt-get install sudo dnf install

git git git
CMake cmake-extras

cmake-curses-gui
cmake

C/C++/Fortran g++ gfortran gcc-c++ gcc-gfortran
MPI mpi-default-dev mpich-devel
ZLIB zlib1g-dev zlib-ng-devel
ParaView paraview-dev paraview-devel
LAPACK/OpenBLAS1 libopenblas-dev openblas-devel

continues on next page

1 Package can be automatically installed through FLEXI as compiler option.

5

FLEXI Documentation, Release 24.10

Table 2.1 – continued from previous page
Package Debian / Ubuntu RHEL / Fedora
Installation Command sudo apt-get install sudo dnf install

HDF51 libhdf5-mpi-dev hdf5-mpich-devel
FFTWPage 5, 1 libfftw3-dev fftw-devel

Tip: On RPM-based distributions, you might need to load the MPI module using the command module
load mpi.

2.1.2 Additional Configuration

On some systems it may be necessary to increase the size of the stack (part of the memory used to store
information about active subroutines) in order to execute FLEXI correctly. This is done by entering the
following command.

ulimit -s unlimited

2.2 Obtaining the Source Code

The FLEXI repository is available at GitHub. To obtain the most recent version you have three possibil-
ities:

• Clone the FLEXI repository from GitHub

git clone https://github.com/flexi-framework/flexi.git

• Download FLEXI from GitHub:

wget https://github.com/flexi-framework/flexi/archive/master.tar.gz
tar xzf master.tar.gz

• Download a release FLEXI repository from GitHub

https://github.com/flexi-framework/flexi/tags

Attention: Cloning FLEXI from GitHub may not be possible on some HPC clusters due to re-
stricted internet access. Please refer to the cluster’s user instructions for possible remedies, such as
establishing a SOCKS proxy on a machine with unlimited internet access, as documented here for
the HLRS at the University of Stuttgart.

6 Chapter 2. Installation

https://github.com/flexi-framework/flexi/tags
https://kb.hlrs.de/platforms/index.php/Secure_Shell_ssh#HTTP(S)

FLEXI Documentation, Release 24.10

2.3 Compiling the Code

In order to compile the code, change into the FLEXI root directory, create a new sub-folder, and use
CMake to configure and compile the code

mkdir build
cmake -B build
cmake --build build

Custom configuration of compiler options may be done using

ccmake -B build

For a list of all compiler options see section Compiler Options.

The executables flexi and posti_visu (if enabled) are generated in the sub-directory build/bin/.

Note: In the remainder of this user guide, we omit the path to the FLEXI executable (and related tools),
but assume assume it can be executed directly by typing flexi. This can be achieved by defining an
alias or symbolic link, for example.

For Linux beginners, we provide a short explanation on how to achieve this usage behavior. In general,
in order to execute a file, the command either has to be in the PATH environment variable or you have to
enter the full path to it in the terminal. To enable typing only flexi, you can add a symbolic link to the
FLEXI executable in the current directory, e.g. test case folder, by entering

ln -s [FLEXI_ROOT]/build/bin/flexi

Among the files in the current directory, this symbolic link will be listed as

flexi -> [FLEXI_ROOT]/build/bin/flexi

2.4 Running the Code

For a first minimal FLEXI simulation, navigate to the cavity tutorial folder and run FLEXI:

cd [FLEXI_ROOT]/tutorials/cavity/Basic_Re100
flexi parameter_flexi.ini

Convert the output files to the vtu format by entering

posti_visu cavity_State_0000000.200000000.h5

and visualize the generated files using e.g. ParaView. Note that this conversion step requires to enable
the posti_visu tool by toggling the POSTI flag in the CMake configuration (see section Compiling the
Code above).

2.3. Compiling the Code 7

FLEXI Documentation, Release 24.10

8 Chapter 2. Installation

CHAPTER

THREE

CODE OVERVIEW

3.1 Feature List

FLEXI currently has the following features implemented, with most of them being covered in Section 5
Tutorials.

Equation Systems

• Compressible Euler equations

• Compressible Navier-Stokes equations

• Linear scalar advection and diffusion equations

• Reynolds-averaged Navier–Stokes equations using Spalart–Allmaras turbulence model

Space Discretization

• Discontinuous Galerkin Spectral Element Method (DGSEM) [1, 2]

– Legendre Gauss nodes

– Legendre Gauss Lobatto nodes

• Finite Volume (FV) shock-capturing by either

– Switching to finite volume subcells [3] or

– Blending the finite volume operator [4]

– Several shock indicators available

Time Discretization

• Explicit Runge-Kutta (RK) schemes

– Standard RK schemes

– Low storage RK schemes [5]

– Strong stability preserving RK methods [6]

9

FLEXI Documentation, Release 24.10

Computational Domain

• Two- or three-dimensional domains

• Curved Meshes

• Nonconforming Meshes via mortar interfaces [7]

• Sponge zone [8]

• Boundary conditions

– Various subsonic inflow and outflow conditions [9]

– Exact boundaries (Dirichlet)

– Periodic boundaries

– Slip wall (Euler wall)

– Non-slip walls (Navier-Stokes wall): adiabatic / isothermal

Numerical Scheme

• Classical and split-form DG schemes [10]

• Dealiasing [11]

– Filtering

– Overintegration

• Riemann solvers

– Local Lax-Friedrichs

– HLL

– HLLC

– Roe-Pike

• Lifting methods

– Bassi Rebay 1 [12]

– Bassi Rebay 2 [12]

• Time averaging

10 Chapter 3. Code Overview

FLEXI Documentation, Release 24.10

3.2 Compiler Options

The following table describes the most important configuration options which can be set when building
FLEXI using CMake. Some options are dependent on others being enabled (or disabled), such that the
available ones may change upon reconfiguring.

Table 3.1: Compiler Options

Build Option Possible Values Description
CMAKE_BUILD_TYPE Release / Profile /

Debug
normal execution / performance profiling us-
ing gprof / debug compiler for detailed error
messages during code development

CTAGS_PATH install directory of Ctags, an optional pro-
gram used to jump between tags in the
source files (see e.g. the implementations
Exuberant Ctags or Universal Ctags)

LIBS_BUILD_HDF5 on / off will be set to on if no pre-built HDF5 instal-
lation was found on your machine to build a
HDF5 version during compilation

HDF5_DIR specify the directory of a pre-built HDF5 li-
brary that was built using the CMake system,
this directory should contain the CMake
configuration files (e.g. hdf5-config.cmake)

FLEXI_2D on / off set to on to run two-dimensional simula-
tions, in this case you have to provide a mesh
that consists of only one layer of elements in
the third dimension

FLEXI_EQNSYSNAME linearscalarad-
vection / navier-
stokes / rans_sa

linear scalar advection-diffusion equation
/ Navier–Stokes equations / Reynolds-
averaged Navier–Stokes equations using
Spalart–Allmaras turbulence model

FLEXI_FV off / switch / blend Finite-Volume (FV) shock-capturing: dis-
abled / by switching DG elements in FV sub-
cell representation [3] / by blending the FV
and the DG operator [4]

FLEXI_FV_RECONSTRUCTION on / off only available if FLEXI_FV is set either to
switch or blend, enables the linear recon-
struction of the solution at the FV sub-
cell faces (second-order FV scheme) and is
needed for the calculation of parabolic gra-
dients

FLEXI_LIFTING br1 / br2 lifting method to compute the DG gradients
in the parabolic terms: first [12] / second
[13] method of Bassi and Rebay

LIBS_USE_MPI on / off define whether to compile with MPI (neces-
sary for parallel execution)

FLEXI_NODETYPE gauss / gauss-
lobatto

node-set used to define the basis functions of
the DG method, see [1] for details

continues on next page

3.2. Compiler Options 11

https://ctags.sourceforge.net/
https://github.com/universal-ctags/ctags

FLEXI Documentation, Release 24.10

Table 3.1 – continued from previous page
Build Option Possible Values Description
LIBS_USE_PAPI on / off enable to use the PAPI library to per-

form performance measurements (e.g. flop
counts)

FLEXI_PARABOLIC on / off define whether the parabolic term of the cho-
sen equation system should be included or
not, more efficient than simply setting the
diffusion coefficient to zero since the gradi-
ents do not need to be discretized

FLEXI_POLYNOMIAL_DEGREE N / {1,2,3,. . . } polynomial degree of basis functions: to be
set in parameter file / compile with fixed de-
gree for performance (1,2,3,. . .)

FLEXI_SPLIT_DG on / off enable the split form of the DG operator, al-
lows to use kinetic energy or entropy stable
flux functions

FLEXI_TESTCASE default / hit / phill
/ riemann2d /
taylorgreenvortex
/ channel

some benchmark simulation setups are en-
capsulated in test cases (separate sub-
folders) with case-specific initialization, an-
alyze routines, boundary conditions, etc.,
while the default test case does not include
any additions: see section Tutorials for more
details

FLEXI_VISCOSITY constant / suther-
land / powerlaw

modeling approach for the dynamic viscos-
ity: constant / Sutherland’s law / power law

POSTI on / off enable to also build the post-processing tool-
set next to the actual simulation code, the
specific tools can be selected once this flag
is enabled

POSTI_VISU_PARAVIEW on / off enable to build the ParaView plugin for
the visualization of FLEXI simulation data,
the ParaView libraries must be available
on the systems and environment variable
$ParaView_DIR set accordingly

FLEXI_PERFORMANCE on / off enables a set of advanced features to improve
the performance of FLEXI

FLEXI_PERFORMANCE_OPTILIFT on / off enable to lift only the gradients of the vari-
ables in the flux function of the selected
equation system improves the performance
for FLEXI_PARABOLIC=ON, but cannot be
used if posti tool-set is built (POSTI=ON)

FLEXI_PERFORMANCE_PGO on / off enables profile-guided optimization (PGO)
for compilation, currently only supported
with GNU compiler the required two-step
compilation process is detailed in section
Performance Improvements

12 Chapter 3. Code Overview

https://icl.utk.edu/papi/

CHAPTER

FOUR

WORKFLOW

This chapter describes the complete process of performing a simulation in FLEXI. The process com-
prises the mesh generation using the high-order preprocessor HOPR, the actual simulation of the numer-
ical problem, and the post-processing step using the POSTI toolchain. An overview of this workflow
and the components of FLEXI is given in the flowchart below.

Fig. 4.1: Basic modules and files used by FLEXI.

Note that both, HOPR and FLEXI, use the HDF5 format to output mesh files and simulation states,
respectively. HDF5 is a widely used data model, library, and file format for storing and managing data.
It supports an unlimited variety of data types, and is designed for flexible and efficient I/O, and for high
volume, complex data. We refer to the HDF5 website for further information on this file format in general.

4.1 Mesh Generation using HOPR

FLEXI obtains its computational meshes from the high-order preprocessor HOPR (available under
GPLv3 at HOPR project) in HDF5 format. The design philosophy is that all tasks related to mesh orga-
nization, different input formats and the construction of high-order geometrical mappings are separated
from the parallel simulation code. The serial standalone framework HOPR has been developed to gen-
erate high-order meshes from input data by external linear mesh generators, supporting different file
formats. It also provides a built-in mesh generator for simple, structured meshes. HOPR can either
be compiled from the source code or be used directly via the provided AppImage, both available on its
github page.

The basic command to run HOPR is

hopr parameter_hopr.ini

where the path to the HOPR executable has been omitted for simplicity. The test cases provided in
chapter Tutorials come with both a ready-to-use mesh file as well as a parameter file for HOPR, which

13

https://www.hdfgroup.org
https://hopr.readthedocs.io/en/latest/
https://github.com/hopr-framework/hopr/releases

FLEXI Documentation, Release 24.10

can be used to generate or modify the meshes as needed. Provided the mesh file has been set up, its
location must be specified in the FLEXI parameter file.

MeshFile=path/to/mesh/file.h5

4.2 Build Configuration

Before setting up a simulation, the code must be compiled in the desired configuration. An overview
of the most commonly used compiler options is given in section Compiler Options. The default con-
figuration solves the three-dimensional Navier–Stokes equations using the pure DG operator (no FV
shock-capturing) and does not compile any POSTI tools.

4.2.1 Using CMake Presets

The build configurations used for the Tutorials are stored as CMake presets (human-readable format)
in CMakePresets.json located in the FLEXI root directory. They can be applied by creating a build
folder, reading the desired preset and compiling the code:

mkdir build
cmake -B build --preset <preset_name>
cmake --build build

Caution: CMake presets were introduced in CMake version 3.19. For earlier versions, FLEXI can
only be configured manually.

4.2.2 Manual Configuration

To configure the code manually, you can use the CMake GUI, which displays brief instructions and
descriptions of the compiler options at the bottom of the window. Note that some compiler options are
dependent on others, such that you should always configure by hitting the c key after changing the value
of a compile option. In order to change values, use the arrow keys to select a compile option, and hit the
enter key to edit its value; boolean options will toggle with the enter key. Once all desired options are
set, generate the Makefiles by hitting the g key, exit by hitting the q key and compile using make:

mkdir build
ccmake -B build
cmake --build build

14 Chapter 4. Workflow

FLEXI Documentation, Release 24.10

4.3 Parameter File

The computational setup of the considered test case, including solver settings, initial and boundary con-
ditions, material properties, data output, is specified via a parameter file. This file is typically named
parameter_flexi_ini and contains a simple list of parameters, given in the form

! This is a comment, e.g. section heading
parameter_name = parameter_value

Note that the format is case-insensitive (Fortran-style) and that some parameters can also be listed mul-
tiple times (so-called CountOptions).

To get a list and short description of all possible parameters, grouped thematically, run the FLEXI help

flexi --help

To confine the output to the parameters of a certain section or only one specific parameter, respectively,
run

flexi --help SECTION
flexi --help PARAMETER

4.3.1 Solver Settings

The definition of the numerical solver typically covers the following steps.

• Set the polynomial degree.

Define the polynomial degree N of the solution. The order of convergence follows as 𝑁 +1. Each
grid cell contains (𝑁 + 1)3 collocation points to represent the solution.

• Choose a dealiasing approach.

For under-resolved Navier-Stokes simulations, e.g. in an LES setting, dealiasing is important for
numerical stability. Various choices are available and set using either over-integration or a split-
form DG scheme. As the performance penalty of over-integration is substantial, the usage of the
split formulation is recommended.

– OverintegrationType=1 is a filtering strategy, where the complete operator is first evalu-
ated at N (𝑈𝑁

𝑡) and then filtered to a lower effective degree NUnder (𝑈𝑁𝑢𝑛𝑑𝑒𝑟
𝑡). To use this

variant, specify Nunder to a value smaller than N.

– OverintegrationType=2 is a filtering strategy, where the operator in reference space,
e.g. 𝐽𝑈𝑡, is first projected to the NUnder node set before converting it to physical space
𝑈𝑁𝑢𝑛𝑑𝑒𝑟
𝑡 = 𝐽𝑈𝑁𝑢𝑛𝑑𝑒𝑟

𝑡 /𝐽𝑁𝑢𝑛𝑑𝑒𝑟. This implementation enforces conservation. To use this
variant, specify Nunder to a value smaller than N.

– SplitDG uses a split formulation, requiring the compiler option FLEXI_SPLIT_DG to be
turned on. The most commonly used options are the kinetic energy stable formulation by
Pirozzoli [14] (PI), the entropy conservative formulation by Chandrashekar [15] (CH) and a
flux differencing form equivalent to the standard DGSEM (SD).

• Choose a Riemann solver.

The Riemann solver defines how the inter-element coupling is accomplished. The available vari-
ants are listed in section Parameter File. Use the Riemann and the RiemannBC options to specify

4.3. Parameter File 15

FLEXI Documentation, Release 24.10

which Riemann solver is to be used at internal interfaces and at Dirichlet boundary conditions,
respectively. The default Riemann solver is RoeEntropyFix.

• Choose a time discretization method.

The time discretization method is set using the option TimeDiscMethod. Various explicit Runge-
Kutta variants are available and listed in section Parameter File. By default, the low-storage fourth
order Runge-Kutta scheme by [5] is employed.

4.3.2 Initial Conditions

Both, initial and boundary conditions are controlled via the so-called RefState and ExactFunction
constructs.

The RefState specifies a state vector in primitive form (𝜌, 𝑢, 𝑣, 𝑤, 𝑝)⊺. An arbitrary number of reference
states can be defined:

RefState=(/1,1,0,0,0.71428571/)
RefState=(/1,0.3,0,0,0.71428571/)

In this example, the first state describes a parallel flow in 𝑥 direction at 𝑀𝑎 = 1, the second state at
𝑀𝑎 = 0.3, if a ideal gas with 𝜅 = 1.4 is used.

The code contains a number of predefined analytic solution fields (ExactFunction), which are invoked
by specifying their respective number. For instance, the initialization of a simple constant freestream is
achieved by setting

IniExactFunc=1

The associated state vector to be used is determined by

IniRefState=1

which, in the above example would imply that the first RefState is used for initialization.

Note: The implemented exact functions are specific to the equation system and not documented compre-
hensively. They can be looked up in the source code, for example in src/equations/navierstokes/
idealgas/exactfunc.f90.

4.3.3 Boundary Conditions

The names of the boundaries are contained in the mesh file and can be used in the FLEXI parameter file
to override the boundary conditions set in the HOPR parameter file, if necessary.

FLEXI lists the boundaries and their respective boundary conditions during initialization, for example:

| Name Type State Alpha
| BC_periodicz- 1 0 3
| BC_periodicy- 1 0 2
| BC_periodicx+ 1 0 -1
| BC_periodicy+ 1 0 -2

(continues on next page)

16 Chapter 4. Workflow

FLEXI Documentation, Release 24.10

(continued from previous page)

| BC_periodicx- 1 0 1
| BC_periodicz+ 1 0 -3

If we wished to apply a Dirichlet boundary condition with RefState=2 at the two boundaries in 𝑦-
direction, we would have to add the following lines to the parameter file

BoundaryName=BC_periodicy-
BoundaryType=(/2,2/)
BoundaryName=BC_periodicy+
BoundaryType=(/2,2/)

Note that the first entry in the brackets specifies BC_TYPE, while the second specifies BC_STATE, in this
case the number of the RefState to be used. In general, BC_STATE identifies either a RefState, an
ExactFunction or remains empty, depending on the BC_TYPE.

The currently implemented boundary conditions for the Navier-Stokes equations are listed in the table
below. See [9] for details on the listed inflow/outflow boundary conditions.

Table 4.1: Boundary conditions.

Boundary Con-
dition

BC_TYPEBC_STATE Comment

Periodic BC 1 − Can only be defined in HOPR
Weak Dirichlet 2 RefState
Weak Dirichlet 12 − Like 2, but using an external state set

by BCStateFile
Weak Dirichlet 22 ExactFunction Like 2, but using an ExactFunction
Wall adiabatic 3 −
Wall isothermal 4 RefState Isothermal wall, temperature is spec-

ified via 𝑝 and 𝜌 contained in the
RefState

Wall slip 9 − Slip, symmetry or Euler wall
Outflow Mach
number

23 RefState

Outflow Pressure 24 RefState
Outflow Subsonic 25 RefState
Inflow total pres-
sure / temperature

27 RefState Special Refstate: total quantities
(𝑇𝑡, 𝛼, 𝛽, 0, 𝑝𝑡)

4.3.4 Material Properties

At present, the only available equation of state in the Navier-Stokes solver of FLEXI is the ideal gas,

𝑝 = 𝜌𝑅𝑇

with the gas constant 𝑅. The heat flux follows Fourier’s law

𝑞⃗ = −𝜆∇𝑇 with 𝜆 =
𝜅𝑅𝜇

(𝜅− 1)Pr

where 𝜆 denotes the heat capacity ratio, Pr the Prandtl number and 𝜇 the dynamic viscosity.

These parameters are specified in the parameter file using R, kappa, Pr and mu0, respectively.

4.3. Parameter File 17

FLEXI Documentation, Release 24.10

4.3.5 Data Output

The end time of the simulation is set using tEnd. FLEXI features several analyze routines, which evaluate
the current solution and are invoked every time interval Analyze_dt.

Specifically, the following evaluations are possible:

• CalcErrorNorms=T: Calculate the 𝐿2 and 𝐿∞ error norms based on the specified ExactFunc as
reference. This evaluation is used for e.g. convergence tests.

• CalcBodyForces=T: Calculate the pressure and viscous forces acting on every wall boundary
condition (BC_TYPE=3,4 or 9) separately. The forces are written to dat files.

• CalcBulkState=T: Calculate the bulk quantities, such as the bulk velocity for the channel flow.

• CalcWallVelocity=T: Due to the discontinuous solution space and the weakly enforced bound-
aries, the no-slip condition is not exactly fulfilled. The deviation depends mainly on the resolution
in the near-wall region. Thus, this evaluation can be used as a resolution measure at the wall.

The solution itself is dumped to hard drive every Analyze_dt as well, unless a multiple of this time
interval is specified via nWriteData. For example, nWriteData=10 means that the solution output is
performed every tenth analyze time step only.

4.4 Running the Simulation

In general, the simulation is started by running

flexi parameter.ini [restart_file.h5]

The restart file is optional and allows to resume the simulation from any existing state file.

Attention: When restarting from an earlier time (or zero), all later state file possibly located in the
present directory are deleted!

The simulation code is specifically designed for (massively) parallel execution using the MPI library. For
parallel runs, the code must be compiled with LIBS_USE_MPI=ON. Parallel execution is then controlled
using mpirun

mpirun -np <no. processors> flexi parameter.ini [restart_file.h5]

4.4.1 Domain Decomposition

The grid elements are organized along a space-filling curve (SFC), which gives a unique one-dimensional
element list. The SFC type is controlled by HOPR, with the Hilbert curve set as default. In a parallel
run, the mesh is partitioned into as many subdomains as deployed processors simply by splitting the SFC
evenly. Thus, domain decomposition is done fully automatic and is not limited by e.g. an integer factor
between the number of cores and elements. The only limitation is that the number of cores must not
exceed the number of mesh elements.

18 Chapter 4. Workflow

FLEXI Documentation, Release 24.10

4.4.2 Choosing the Number of Cores

Parallel performance heavily depends on the number of processing cores. The performance index is
defined as

𝑃𝐼𝐷 =
𝑊𝑎𝑙𝑙𝑇 𝑖𝑚𝑒×#𝐶𝑜𝑟𝑒𝑠

#𝐷𝑂𝐹 ×#𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝𝑠×#𝑅𝐾𝑠𝑡𝑎𝑔𝑒𝑠

and measures the wall time per degree of freedom and stage of the time integration scheme. During
runtime, the average 𝑃𝐼𝐷 is displayed in the output as

CALCULATION TIME PER STAGE/DOF: [5.59330E-07 sec]

When compared to the single-core performance, it can be used as a parallel efficiency metric. The 𝑃𝐼𝐷
mainly depends on the processor workload

𝐿𝑜𝑎𝑑 =
#𝐷𝑂𝐹

#𝐶𝑜𝑟𝑒𝑠

and the polynomial degree 𝑁 . Processor workloads for optimal performance lie in the range 𝐿𝑜𝑎𝑑 =
2000 − 5000. A recent performance analysis on the HPE Appollo System HAWK using AMD EPYC
7742 CPUs is given in [16]

4.5 Test Case Environment

The test case environment can be used as to add test case-specific code for e.g. custom source terms or
diagnostics to be invoked during runtime.

The test cases are contained in the folder src/testcase/ and define standardized interfaces for initial-
ization, source terms and analysis routines

Table 4.2: Test case interfaces.

Interface Name Description Example
InitTestcase Read in test case related parameters

from the FLEXI parameter file, initial-
ize the corresponding data structures

Prescribed mass flow for phill test-
case

FinalizeTestcase Deallocate test case specific data struc-
tures

ExactFuncTest-
case

Define test case specific analytic ex-
pressions for initial or boundary condi-
tions

CalcForcing Compute test case specific source
terms

pressure gradient in test case channel

TestCaseSource Add test case specific source terms to
equation system

apply pressure gradient in test case
channel

AnalyzeTestCase Perform test case specific diagnostics evaluate dissipation rate of testcase
taylorgreenvortex

The compiler option FLEXI_TESTCASE sets the current test case. Currently supplied test cases are

• default

4.5. Test Case Environment 19

FLEXI Documentation, Release 24.10

• channel: turbulent channel flow with steady pressure gradient source term

• phill: periodic hill flow with controlled pressure gradient source term \la-
bel{missing:phill_testcase}

• riemann2d: a two dimensional Riemann problem

• taylorgreenvortex: automatic diagnostics for the Taylor-Green vortex flow

Note that the test case environment is currently only applicable to the Navier–Stokes equation system.

4.6 Post Processing

4.6.1 Overview of Toolchain

FLEXI comes with a post-processing tool-chain that is enabled through the compiler option POSTI.
This POSTI tool-chain converts the FLEXI simulation results, stored in a custom data format in HDF5
files, into standardized data formats like vtu, which enable further post-processing and are readable by
ParaView. Additionally, the tool-chain allows compute other quantities of interest derived from the
stored variables. Depending on the type of data output, there are different POSTI tools that can be used.
The data types typically generated by simulations are as follows:

• StateFile

The transient flow state is stored in a so-called StateFile. Aside from the solu-
tion vector of the conserved variables (Density, MomentumX, MomentumY, MomentumZ,
EnergyStagnationDensity), it contains all relevant information to ensure a restart of the asso-
ciated simulation time.

• TimeAverage

It is possible to carry out a statistical analysis (mean values and fluctuations) of specific variables
during the simulation. A large number of variables can be analyzed statistically, including variables
derived from the conserved variables. These statistics can be used, for example, to determine the
local Reynolds stresses in the simulation. The associated averaging interval corresponds to the
output interval. It is also possible to merge consecutive files and increase the effective averaging
interval.

• BaseFlow

This file is primarily required for consistent restarts. It stores a moving time average that is used
for sponge zones, among others.

• RecordPoints (RP) / probe data

In order to save data with a high temporal resolution without using too much memory, FLEXI
offers the option of defining recordpoints/point probes. The data of the point samples are stored in
the RP files for further processing.

• CSV files

Depending on the selected settings, evaluations are calculated directly by FLEXI at runtime and
are exported as CSV files. These files require no further processing and can be used directly for
analysis.

The most relevant POSTI tools are listed with a short description in the Table below.

20 Chapter 4. Workflow

FLEXI Documentation, Release 24.10

Table 4.3: Most relevant POSTI tools.

POSTI tool Description
POSTI_AVG2D Averages a 3D solution file to a 2D solution file, requires an

ijk-sorted mesh.
POSTI_MERGETIMEAVERAGES Merges consecutive TimeAverage files.
POSTI_RP_EVALUATE Allows to evaluate recordpoints from a solution file after the

simulation.
POSTI_RP_PREPARE Generates the recordpoints file for usage during or after the

simulation.
POSTI_RP_VISUALIZE Converts the recordpoints raw data into post-processable

data.
POSTI_SWAPMESH Swaps the mesh of a solution file for a new mesh with a

different spatial resolution.
POSTI_VISU Converts the volume solution to files readable by e.g. Par-

aview.

4.6.2 Basic Usage

In the following, the workflow on how to use the POSTI tools in general is briefly described at the
example of POSTI_VISU.

Most POSTI tools have a help function that describes how to use the tool and the available parameters.
This help can be invoked by running the tool with the flag --help, in this case

posti_visu --help

The POSTI_VISU tool reads a separate parameter file as optional first argument, while the files to be
visualized are passed as the last argument. The latter can be a single file or several files, specified either
as simple space-separated list like Testcase_State_0.h5 Testcase_State_1.h5 or via standard
wildcarding like Testcase_State_*.h5. The file must contain the entire volume solution, i.e. can be
a StateFile or a TimeAverage file, for example.

For serial execution, the POSTI_VISU tool is invoked by entering

posti_visu [parameter_postiVisu.ini [parameter_flexi.ini]] <statefiles>

The tool also runs in parallel by prepending mpirun -np <no. processors> to the above command,
as usual, provided the compiler option LIBS_USE_MPI is enabled.

mpirun -np <no. processors> posti_visu [parameter_postiVisu.ini [parameter_
→˓flexi.ini]] <statefiles>

The most important runtime parameters to be set in parameter_postiVisu.ini are listed in table
Table 6.1 in section POSTI_VISU.

The following lines can be used as an example for the parameter_postiVisu.ini file.

NVisu = 10
varName = MomentumX
varName = VelocityX

(continues on next page)

4.6. Post Processing 21

FLEXI Documentation, Release 24.10

(continued from previous page)

varName = Density
varName = Pressure
varName = Temperature

22 Chapter 4. Workflow

CHAPTER

FIVE

TUTORIALS

This chapter provides a detailed overview of flow simulations with FLEXI, assuming familiarity with
setting compiler options and code compilation. The path to all executables is omitted here. We assume
you have either symlinked flexi, hopr, and all posti tools into the runtime directory or call these executa-
bles at their relative location.

Each tutorial directory contains the necessary .ini files - parameter_hopr.ini, parameter_flexi.
ini, parameter_postiVisu.ini - as well as the mesh file *_mesh.h5 in HDF5 format (generated
with HOPR).

Listing 5.1: Directory tree for a tutorial.

tutorial
mesh.h5
parameter_flexi.ini
parameter_hopr.ini
parameter_postiVisu.ini

Tip: While each tutorial can be run directly in its own directory, we recommend copying each folder to
a new directory. This way, you can run the simulations and freely modify the .ini files without altering
the original setup.

5.1 Linear Scalar Advection-Diffusion Equation

The three-dimensional linear scalar advection-diffusion (LinAdvDiff) equation implemented in FLEXI
provides a simple and computationally efficient system of equations for testing and feature development:

𝜕Φ

𝜕𝑡
+∇ · (uΦ) = 𝑑∇2Φ

Here, a scalar solution Φ is advected with a constant three-dimensional velocity u and experiences dif-
fusion with a constant scalar diffusion coefficient 𝑑. This equation is especially useful for evaluating
the basic properties of the DG operator, which we will explore in this tutorial. The tutorial is located at
tutorials/linadv.

23

FLEXI Documentation, Release 24.10

5.1.1 Theoretical Background

The dispersion and dissipation properties of the DGSEM operator can be analyzed [17] by examining the
evolution of solutions for the one-dimensional linear scalar advection equation for a specific initial wave
number in a simplified setup without physical dissipation (𝑑 = 0). A detailed discussion can be found in
the cited paper; here, only a short summary is presented.

Under these preceding conditions, the equation reduces to

𝜕Φ

𝜕𝑡
+ 𝑢

𝜕Φ

𝜕𝑥
= 0

and we consider a wave-like analytical solution on an infinite domain,

Φ(𝑥, 𝑡) = 𝑒𝑖(𝑘𝑥−𝜔𝑡)

where 𝑢 is a constant scalar transport velocity, 𝜔 = 𝑘𝑢 the angular frequency, and 𝑘 the wavenumber.
Assuming a uniform mesh with mesh size ∆𝑥, we seek numerical solutions of the form

Φ𝑙 = Φ̂𝑒𝑖(𝑘𝑙Δ𝑥−𝜔𝑡)

where Φ𝑙 is a vector containing the degrees of freedom within cell 𝑙, and Φ̂ is a complex amplitude
vector, both of size 𝑁 + 1. Focusing on the semi-discrete system (only spatially discretized), we can
write the system in matrix notation within a single element, yielding an algebraic eigenvalue problem

𝐴Φ̂ = ΩΦ̂,

with Ω = 𝜔Δ𝑥
𝑎 . The matrix 𝐴 represents the spatial discretization and is a function of the non-

dimensional wavenumber 𝐾 = 𝑘∆𝑥.

Examining the solutions to this eigenvalue problem reveals relationships for the dissipation and dispersion
behavior inherent to the (spatial) numerical scheme for different wavenumbers. In Fig. 5.1, we plot these
relationships as functions of the polynomial degree 𝑁 , using DGSEM with Gauss nodes for the so-called
physical mode. This mode is associated with the eigenvalue that follows the exact dispersion relation for
the largest range of wavenumbers and also has the biggest influence on the overall numerical solution, at
least for rather well-resolved waves.

Fig. 5.1: Dispersion and dissipation relationship for 𝑁 = {1, . . . , 10} over the modified wavenumber
𝐾*. For the dispersion, the dashed line gives the exact relation.

The quantities are normalized by the number of grid points, such that 𝐾* = 𝐾
𝑁+1 and Ω* = Ω

𝑁+1 , to give
a fair comparison between different polynomial degrees. This means that if 𝐾* = 𝜋, we have two points
per wavelength which is the theoretical minimum required to resolve a wave according to the Nyquist
theorem, while a normalized wavenumber of 0 corresponds to a constant solution.

24 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

As seen in the plot, the dissipation properties of higher-order approximations are significantly improved
over those of low-order schemes, as they can preserve higher-frequency waves without significant dissipa-
tion. However, there is a sharp increase in dissipation error at the high modes associated with higher-order
approximations, which is one of the reasons for scaling down the timestep for larger values of 𝑁 .

We will now demonstrate these properties through numerical experiments using the linear scalar advec-
tion equation.

5.1.2 Build Configuration

In order to use the LinAdvDiff equations, the equation system must be specified during the configuration
by setting EQNSYSNAME=linearscalaradvection. Since we do not consider diffusion in this tutorial,
either turn off the parabolic terms through the build option FLEXI_PARABOLIC=OFF or simply specify a
zero diffusion coefficient in the parameter file, DiffC=0. The required options are set automatically by
compiling FLEXI with the linadv preset using the following commands.

cmake -B build --preset linadv
cmake --build build

5.1.3 Mesh Generation

We want to perform numerical experiments by solving the one-dimensional linear scalar advection equa-
tion. We initialize the simulation with a single wave with a specific angular frequency and observe the
behavior of this wave as it evolves, depending on the normalized, non-dimensional wavenumber 𝐾* and
the polynomial degree 𝑁 . Since the analysis in the previous section was based on an infinite domain, the
computational domain needs to be large enough to neglect influences from the boundaries. Although pe-
riodic boundary conditions could be used as an alternative, this would restrict the choice of wavelengths
since they have to fit in the domain and could also adversely affect the stability of the time discretization.
Therefore, we opt for an enlarged domain setup and focus on the evolution of the wave in a single element
at the center of the domain.

For this tutorial, we create a (quasi-)one-dimensional, equidistant grid by discretizing the interval 𝑥 ∈
[−61, 61] with 61 elements, resulting in ∆𝑥 = 2, which matches the reference element size. To achieve a
(quasi-)one-dimensional simulation, we impose periodic boundary conditions in 𝑦 and 𝑧 direction. The
boundary conditions in the 𝑥-direction are less critical due to the large extent of the domain, so we apply a
simple Dirichlet-type boundary conditions (BC type 2) with the analytical wave function as the boundary
state. This can be achieved by setting the BC_STATE, which means that the initialization function will
be used instead of a separate function. Recall that for the LinAdv case, information propagates with
the velocity 𝑢. Thus, if the boundaries are a distance 𝐿 away from the cell of interest, solutions can be
computed up to time 𝑡 = 𝐿

𝑢 without any influence of the boundary conditions.

In the tutorial directory, we provide the necessary mesh file, CART_1D_mesh.h5, along with a parameter
file for HOPR to generate this mesh. You can recreate the mesh by running the following command.

hopr parameter_hopr.ini

5.1. Linear Scalar Advection-Diffusion Equation 25

FLEXI Documentation, Release 24.10

5.1.4 Simulation Parameters

The parameter file to run the simulation is supplied as parameter_flexi.ini. The parameters specific
to the LinAdvDiff equation system can be found in the EQUATION section of the file.

! == !
! EQUATION
! == !
AdvVel = (/1.,0.,0./)
DiffC = 0.

The parameter AdvVel sets the advection velocity in all three spatial directions. In our one-dimensional
simulation, only the first velocity component is non-zero. We set the diffusion coefficient DiffC to zero to
eliminate physical diffusion, although this is not strictly necessary since the parabolic terms have already
been excluded via the build configuration.

The initial condition is derived from the earlier analysis outlined above, with the exact solution given by

Φ(𝑥, 𝑡) = 𝑒𝑖(𝑘𝑥−𝜔𝑡).

The amplitude of the wave is given by the real part of this complex expression

𝐴(𝑥, 𝑡) = 𝑐𝑜𝑠(𝑘𝑥− 𝜔𝑡).

This function is implemented as ExactFunc in the LinAdvDiff equation system and is called by speci-
fying

IniExactFunc = 6

in the parameter file. This requires definition of the angular frequency 𝜔, since the wavenumber is given
by 𝑘 = 𝜔

𝑢 , so

OmegaRef = 2.

Note that the ExactFunc function implements the advection velocity and diffusion coefficient as fixed
default values, which override the parameters specified in the parameter file. To focus on the behavior of
the spatial discretization while minimizing the error from time discretization, we set the CFL number to
a small value

CFLscale = 0.1

Given that this tutorial involves a quick computation, we can utilize the visualization routines during
runtime, eliminating the need for post-processing with the posti_visu tool. This is accomplished by
enabling the vtu output format. With this configuration, the visualization routines are called whenever
the analysis routines are executed, with NVisu defining the polynomial degree of the output basis. Since
we do not specify Analyze_dt in the parameter file, the analysis routines will only be invoked at the
beginning and end of the simulation.

outputFormat = 3
NVisu = 30

26 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

5.1.5 Simulation and Results

We start with simulating a well-resolved wave using a moderate polynomial degree of 𝑁 = 4, which
is already configured in the parameter file. For a modified wavenumber of 𝐾* = 1

4𝜋, the dissipation
and dispersion relations indicate that we can expect very small errors. Using the relations above, the
corresponding angular frequency 𝜔 can be calculated as

𝜔 =
𝐾*(𝑁 + 1)

∆𝑥
𝑢.

Hence, we adjust the frequency in the parameter file to

OmegaRef = 1.96349540849

All other parameters can remain unchanged. The simulation will run until 𝑡 = 5 and is started by
executing

flexi parameter_flexi.ini

After the simulation has completed, we can examine the results by opening the file
LinAdvCosineWave_Solution_0000005.000000000.vtu with ParaView. As noted earlier,
we are only interested in the central element within 𝑥 ∈ [−1, 1], so we can clip everything else.
Moreover, given that we are performing a one-dimensional simulation, we can extract the solution
along the 𝑥-axis by creating a simple line plot. To see how dispersion and dissipation introduced by the
numerics influence our results, we will also overlay the analytical solution introduced above. The result
is depicted in figure Fig. 5.2 and shows very little deviation from the analytical solution, as expected,
since we are analyzing a well-resolved wave with a low value for 𝐾*.

Fig. 5.2: Result for a well-resolved wave with 𝐾* = 1
4𝜋 at 𝑡 = 5 for 𝑁 = 4, in comparison with the

exact wave transport.

Of course, it is much more interesting to examine the behavior of waves that are not well-resolved and how
the polynomial degree affects their dynamics. To explore this, we run four simulations with polynomial
degrees ranging from 2 to 11 and setting the normalized wavenumber to 𝐾* = 1.6. Table 5.1 gives an
overview of the polynomial degrees and the resulting angular frequencies.

5.1. Linear Scalar Advection-Diffusion Equation 27

FLEXI Documentation, Release 24.10

Table 5.1: Angular frequencies needed to attain 𝐾* = 1.6.

N OmegaRef
2 2.4
4 4.0
6 5.6
11 9.6

Next, we will run these four simulations by adjusting the values for N and omegaRef in the parameter file
prior to each run. Remember to give each simulation a unique ProjectName to prevent overwriting the
results. Additionally, ensure that NVisu is set to at least three times the value of 𝑁 to obtain a meaningful
visualization. As we already set NVisu=30, simply leave this value unchanged.

The results at 𝑡 = 5, along with the analytical solutions, are shown in Fig. 5.3. Since our comparison
uses a constant normalized wavenumber, the actual frequency of the wave increases with the polynomial
degree. For 𝑁 = 2 (which should not be considered high-order), we observe both significant dissipation,
with an amplitude drop of about 85%, as well as notable dispersion, that is changes in angular frequency
and phase angle. At 𝑁 = 4 (which is at the lower end of what can be considered high-order) there
are already some improvements. The amplitude drop is reduced to around 65%, although a phase shift
remains clearly visible. This trend continues at higher polynomial degrees. For the highest value of
𝑁 tested here, we observe only small deviations in the phase angle and the amplitude. These results
show how higher-order schemes are able to effectively capture waves with fewer points per wavelength
compared to lower-order approximations. This is one of the central aspects why we use such schemes.

Fig. 5.3: Result for a under-resolved wave with 𝐾* = 1.6 at 𝑡 = 5 for 𝑁 = 2 (top left), 𝑁 = 4 (top
right), 𝑁 = 6 (bottom left) and 𝑁 = 11 (bottom right).

28 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

5.2 Freestream

Unlike the previous tutorial, which dealt with simpler equations, we will now consider the behavior of a
compressible fluid flow described by the Navier-Stokes equations. The simplest valid flow solution imag-
inable is a freestream scenario under conditions of pressure, density and velocity. For the current setup,
we specify a freestream scenario with constant pressure 𝑝 = 101325.0 Pa, density 𝜌 = 1.225 kg/m3

and velocity vector 𝑈 = (1, 1, 1)𝑇 m/s. This configuration provides a baseline for analyzing how the
solver handles simple flow conditions and sets the stage for more challenging simulations.

5.2.1 Mesh Generation

In the tutorial directory, we provide the necessary mesh file, cartbox_mesh.h5, along with a parameter
file for HOPR to generate this mesh. You can recreate the mesh by running the following command.

hopr parameter_hopr.ini

5.2.2 Build Configuration

FLEXI should be compiled with the freestream preset using the following commands.

cmake -B build --preset freestream
cmake --build build

5.2.3 Simulation Parameters

The parameter file to run the simulation is supplied as parameter_flexi.ini. The parameters specific
to the Navier-Stokes equation system can be found in the EQUATION section of the file.

! == !
! EQUATION
! == !
IniExactFunc = 1
IniRefState = 1
RefState = (/1.225,1.0,1.,1.,101325./)

The initial condition is set via the variable vector RefState which represents the solution vector
(𝜌, 𝑢, 𝑣, 𝑤, 𝑝)𝑇 . FLEXI permits for multiple RefState vectors, allowing each to be referenced by its
corresponding cardinal number for its order number within the .ini file. In this example, only a single
RefState vector is defined, referenced as 1. Thus, the selection process for the solution vector looks
like the following.

• IniRefState = 1: the initial condition uses RefState 1 for the initial flow field solution.

• IniExactFunc = 1: the employed exact function routine uses RefState 1, such as for calcu-
lating the 𝐿2 error norm.

The material properties of the fluid medium, such as the ideal gas constant, are given in Table 5.2 and
define the gas behavior in combination with the ideal gas law 𝑝 = 𝜌𝑅𝑇 .

5.2. Freestream 29

FLEXI Documentation, Release 24.10

Table 5.2: Material properties for the freestream tutorial.

Variable Value Description
mu0 1.8547e-5 Dynamic viscosity 𝜇
R 276 Ideal gas constant 𝑅
kappa 1.4 Isentropic coefficient 𝜅

The Discontinuous Galerkin (DG) solution is represented by piecewise polynomials on the computational
mesh. In this tutorial, the polynomial degree𝑁 is chosen as𝑁 = 3. The remaining numerical parameters
are outlined in Table 5.3.

Table 5.3: Numerical settings for the freestream tutorial.

Variable Value Description
N 3 Polynomial degree
MeshFile cartbox_mesh.h5 Mesh file to be used
tend 1e-6 End time of the simulation
Analyze_dt 1e-6 Time interval for analysis
CFLscale 0.99 Scaling for the theoretical CFL number
DFLscale 0.4 Scaling for the theoretical DFL number

5.2.4 Simulation and Results

We proceed by running the code with the following command.

flexi parameter_flexi.ini

Running the code prints all output to STDOUT. If the run completes successfully, the last lines should
appear similar to the following (condensed) output.

==
INITIALIZATION DONE! [0.01 sec]
==
--
Sys date : 06.11.2024 14:08:54
#GridCells : 8.0000000E+00
#DOFs : 5.1200000E+02
#Procs : 1.0000000E+00
#DOFs/Proc : 5.1200000E+02
WRITING INITIAL SOLUTION:
--
Initial Timestep : 1.0000000E-06
--
Errors of initial solution:
Sim time : 0.000E+00
L_2 : 2.902E-16 2.902E-16 2.902E-16 2.902E-16 3.815E-11
L_inf : 6.661E-16 6.661E-16 6.661E-16 6.661E-16 1.164E-10
--

Time = 0.0E+00 dt = 0.1E-05 ETA [d:h:m] 0:00:00:00 |> | [0.00%]
(continues on next page)

30 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

(continued from previous page)

==
FLEXI RUNNING cartbox... [0.01 sec] [0:00:00:00]
==
CALCULATION RUNNING...

--
Sys date : 06.11.2024 14:08:54
CALCULATION TIME PER STAGE/DOF: [7.05792E-07 sec]
EFFICIENCY: CALCULATION TIME [s]/[Core-h]: [5.90480E-01 sec/h]
Timestep : 1.063E-04
#Timesteps : 1.000E+00
Sim time : 1.000E-06
L_2 : 2.902E-16 2.521E-15 2.477E-15 2.513E-15 3.815E-11
L_inf : 6.661E-16 1.643E-14 1.421E-14 1.443E-14 1.164E-10
--

Time = 0.1000E-05 dt = 0.1000E-05 ETA [d:h:m]:<1 min |==>| [100.00%]
==
FLEXI RUNNING cartbox... [0.02 sec] [0:00:00:00]
==
==
FLEXI FINISHED! [0.02 sec] [0:00:00:00]
==

Error: It the output does not look like the one above, check for any error messages to diagnose the
issue.

After completing the simulation, examine the contents of the working directory. For a successful run, the
directory should contain additional generated files named <PROJECTNAME>_State_<TIMESTAMP>.h5.
Each file stores the solution vector of the conserved variables at each interpolation node at a specific time,
corresponding to multiples of Analyze_dt.

freestream
cartbox_mesh.h5
cartbox_State_0000000.000000000.h5
cartbox_State_0000000.000001000.h5
parameter_convert.ini
parameter_flexi.ini
parameter_hopr.ini
parameter_postiVisu.ini

5.2. Freestream 31

FLEXI Documentation, Release 24.10

5.2.5 Visualization

FLEXI relies on ParaView for visualization. In order to visualize the FLEXI solution, its format has
to be converted from the HDF5 format into another format suitable for Paraview. FLEXI provides a
post-processing tool posti_visu which generates files in VTK format with the following command.

posti_visu parameter_postiVisu.ini parameter_flexi.ini cartbox_State_0*

5.3 Convergence Test

This tutorial demonstrates how to compute the order of convergence for FLEXI. The process is fully
scripted, allowing for multiple runs across varied grids and polynomial degrees, with the convergence
order calculated automatically. Once the runs are completed, the script generates a plot of the corre-
sponding 𝐿2 error norms and saves it in the directory from which the convergence test was executed.
This script is written in Python3.

See also:

The convergence test scripts are provided in the tools/convergence_test directory, including the
FLEXI execution script tools/convergence_test/execute_flexi.py.

The convergence test is divided into two parts. The first part examines an inviscid case to determine the
order of convergence for the advective terms, applying the Euler equations without any viscous fluxes.
In the second part, the viscous convergence test incorporates physical viscosity into the calculation.

5.3.1 Manufactured Solution

To compute the order of convergence in FLEXI, we apply a benchmark test where an exact analytical
solution is known. For this tutorial, we use the method of manufactured solutions. A detailed description
is found in Roache [18]. In this method, a smooth function is proposed the solution to the equation
system. Since this function generally does not provide a solution to the system of equations, a source term
is calculated to force the corresponding solution. The source term is derived analytically and inserted
into the equation system, cf. for the continuity equation, we obtain

𝜌𝑡 + (𝜌𝑢)𝑥 = 𝑄(𝑥, 𝑡) with 𝜌 = 𝐴+ sin(𝐵(𝑥, 𝑡)) and 𝑢 = const.

The source term must be added within the time integration loop of the flow solver. In FLEXI sine waves
are advected in the density using a constant velocity field. The actual source terms to be considered
depend on the equation system, that is whether Euler or Navier-Stokes equations are used.

5.3.2 Mesh Generation

In the tutorial directory, we provide the necessary mesh files, along with a parameter files for HOPR to
generate these meshes. You can recreate any mesh by running the following command.

hopr parameter_hopr.ini

Non-Conforming Meshes

32 Chapter 5. Tutorials

https://www.paraview.org

FLEXI Documentation, Release 24.10

FLEXI supports non-conforming meshes with mortar interfaces. For the convergence test, parame-
ter files for four mortar meshes are also provided, recognizable through filenames containing the term
MORTAR. To use the convergence test script, simply open the script file at tools/convergence_test/
convergence_grid and replace the mesh filenames. After that, the script can be executed in the same
manner as for the conforming meshes.

5.3.3 Inviscid Convergence Test

We focus first on the convergence test without viscous terms, i.e. conference for the Euler equations.

Manufactured Solution

The manufactured solution for the Euler equation reads as

𝜌 = 𝐴(1 +𝐵 sin(Ω|𝑥− 𝑣𝑡|)) with 𝐴,𝐵,Ω, 𝑣 = 𝑐𝑜𝑛𝑠𝑡.

Since we are working with the Euler equations, the source term is zero, 𝑄(𝑥, 𝑡) ≡ 0. To investigate the
order of convergence for a given polynomial degree𝑁 , the mesh resolution must be progressively refined.
We provide meshes with 1, 2, 4, and 8 elements in each spatial direction together with the corresponding
parameter files in the directory parameter_hopr. Fig. 5.4 displays an exemplary mesh used for the
convergence test and the flow field solution of the density.

Fig. 5.4: Convergence test: Mesh and flow field solution of the density.

Compiler Options

FLEXI should be compiled with the convtest_inviscid preset using the following commands.

cmake -B build --preset convtest_inviscid
cmake --build build

5.3. Convergence Test 33

FLEXI Documentation, Release 24.10

Simulation Parameters

The inviscid convergence test is run from the parameter file parameter_convtest_flexi.ini. Es-
sentially, any valid parameter file can be used since a manufactured solution is simulated. This allows to
test the various methods and features of the code and investigate their order of convergence. However,
for this tutorial, we restrict the parameter file to a simple baseline test case. The default settings for the
time integration are displayed in Table 5.4.

Table 5.4: Numerical settings used for the inviscid convtest.

Variable Value Description
N_Analyze at least 2𝑁 Number of interpolation nodes for the analyze routines,

needed for the calculation of the error norms
IniExactFunc 2 The manufactured solution and the function used to ini-

tialize FLEXI. It can also be used for Dirichlet BCs.
AdvVel (/0.3,0.,0./) constant velocity vector used by specified function
CalcErrorNorms T Flag to calculate of 𝐿2 and 𝐿∞ error norms
tend 0.5 End time of the simulation
Analyze_dt 0.5 Time interval for analysis
nWriteData 1 Number of analyze times the state file is written
CFLscale 0.9 Scaling factor for the theoretical CFL number (convec-

tive time step restriction)
DFLscale 0.9 Scaling factor for the theoretical DFL number (viscous

time step restriction)

The remaining numerical settings necessary, e.g. the polynomial degree and the mesh filename, are set
via the script file. The script can be found in the directory

tools/convergence_test

Two versions of the script are available. The first script, convergence_grid, computes the grid con-
vergence order for a fixed polynomial degree 𝑁 across progressively refined meshes. The second script,
convergence, calculates spectral convergence on a fixed mesh by increasing the polynomial degree. In
the first case of grid convergence, the polynomial degree and the set of meshes can be adjusted. Here,
we choose a polynomial degree of 3, i.e. the theoretical order of convergence is 𝑁 +1 = 4. The spectral
convergence is calculated for polynomials of degree 𝑁 ∈ [1, 10] on a mesh with 4 elements in each
spatial direction.

Simulation and Results

We proceed by running the code to investigate the grid convergence with the following command.

tools/convergence_test/convergence_grid flexi parameter_convtest_flexi.ini --
→˓gnuplot

FLEXI outputs its standard log data to the file ConvTest.log. Alongside this, a CSV (comma-separated
values) file named ConvTest_convfile_grid.csv is created, which contains all computed 𝐿2 and
𝐿inf error norms for the state vector 𝑈 for all meshes and the corresponding orders of convergence.
Furthermore, a PDF file ConvTest_convtest_grid.pdf is generated that plots the 𝐿2 error of the
momentum in 𝑥-direction against the number of elements of the meshes. This plot includes a second

34 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

curve, representing the theoretical convergence order for the selected polynomial degree, which serves
as a benchmark to compare the computed results.

Spectral convergence can be investigated using the following command. Here, the _grid of the original
command is replaced by _N.

tools/convergence_test/convergence flexi parameter_convtest_flexi.ini --
→˓gnuplot

Fig. 5.5 shows the result for grid (left) and spectral (right) convergence.

Fig. 5.5: Convergence test: Plot of spectral (right) and grid (left) convergence

5.3.4 Viscous Convergence Test

The second convergence test includes the viscous terms, i.e., convergence for the Navier-Stokes equations.

Manufactured Solution

For this case, another manufactured solution is chosen as

𝜌 = 2 +𝐴 * sin(Ω * |𝑥| − 𝑣𝜋𝑡) with 𝐴,Ω, 𝑣 = 𝑐𝑜𝑛𝑠𝑡.

The same function is applied to the momentum equations in all spatial directions. The mass specific total
energy in this case is 𝜌𝑒 = 𝜌𝜌. Since the Navier–Stokes equations are considered, the manufactured
solution has a non-zero source term. In FLEXI, this source term is added in the routine CalcSource in
the file

src/equations/navierstokes/idealgas/exactfunc.f90

Note: This manufactured solution can also be solved without considering the viscous terms. In this
case, the source term does not vanish.

5.3. Convergence Test 35

FLEXI Documentation, Release 24.10

Compiler Options

FLEXI should be compiled with the convtest_viscous preset using the following commands:

cmake -B build --preset convtest_viscous
cmake --build build

Simulation Parameters

The viscid convergence test is run from the parameter file parameter_convtestvisc_flexi.ini.
The default settings for the viscous terms are displayed in Table 5.4.

Table 5.5: Numerical settings used for the viscid convtest.

Variable Value Description
IniExactFunc 4 The manufactured solution and the function used to ini-

tialize FLEXI. It can also be used for Dirichlet BCs.
Viscosity 0.03 Dynamic viscosity 𝜇0

Simulation and Results

Execution of the viscous convergence tests is analogously to the inviscid case, e.g., with the following
command.

tools/convergence_test/convergence_grid flexi parameter_convtestvisc_flexi.
→˓ini --gnuplot

5.4 Lid-driven Cavity

This tutorial describes how to set up and run the first non-trivial flow problem. The lid-driven cavity flow
is a standard test case for numerical schemes, and a number of results have been published in literature,
see e.g. [19], [20]. This tutorial assumes that you have completed the previous tutorial, know how to edit
files and post-process the solution with your favorite visualization tool, e.g. ParaView. Also, the later
parts of the tutorial assume that you have access to a computer with an MPI-based parallelization with
at least 4 computing cores - otherwise, it will just take a lot longer :).

This tutorial is divided into two sections. The Basic section introduces the setup process and guides
you through running simulations, providing a solid foundation for using the code. The Advanced section
builds on this, offering insights into code modifications that enable more complex simulations and the
addition of custom features. If you’re mainly interested in running the code as provided, feel free to skip
the Advanced section or only explore the parts that interest you.

36 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

5.4.1 Flow Description

The flow under consideration is essentially incompressible and two-dimensional, but we will use the
three-dimensional code for the compressible Navier-Stokes equations to solve it here. This is not the most
efficient way to compute this flow, but it works well as an example how to set up and run a simulation in
FLEXI. The computation is conducted in a three-dimensional, square domain with periodic boundary
conditions in the “third” direction. The walls of the cavity are modeled as isothermal walls, and a fixed
flow is prescribed at the upper boundary, i.e. the lid of the domain. For the Reynolds numbers investigated
here, this generates a steady, vortical flow field in the cavity. Fig. 5.6 shows the resulting velocity field
and streamlines for 𝑅𝑒 = 400.

Fig. 5.6: Contours of velocity magnitude for the Re = 400 lid-driven cavity case.

Compiler Options

FLEXI should be compiled with the cavity preset using the following commands.

cmake -B build --preset cavity
cmake --build build

5.4. Lid-driven Cavity 37

FLEXI Documentation, Release 24.10

5.4.2 Basic Tutorial | Flow at Re=100

The basic tutorial is contained in the Basic_Re100 subfolder of the tutorials\cavity directory.

Mesh Generation

The domain of interest consists of a square 2D geometry. Although the flow field is two- dimensional, we
will create a three-dimensional domain here and apply periodic boundary conditions in the zdirection.
Also, we will only use one element in that direction to save computational costs. In the tutorial directory,
we provide the necessary mesh files, along with a parameter files for HOPR to generate these meshes.
You can recreate any mesh by running the following command. A full tutorial on how to run HOPR is
available at the HOPR documentation.

hopr parameter_hopr.ini

For this basic tutorial, the simple meshes shown in (Fig. 5.7) will be used.

Fig. 5.7: Meshes for the basic lid-driven cavity tutorial.

Simulation Parameters

The parameter file to run the simulation is supplied as parameter_flexi.ini. The parameters specific
to each topic can be found in the labeled section of the file.

Output

! == !
! OUTPUT
! == !
ProjectName = Tutorial_Cavity_Re100
OutputFormat = 0

The ProjectName parameter defines the prefix for all files generated by the simulation.
For example, if the simulation saves the state at time 0.3, it will produce a file named
Tutorial_Cavity_Re100_State_0000000.300000000.h5 which contains the conserved variable
values at each node. In this tutorial, the OutputFormat parameter is set to 0, which disables on-the-fly
output. Although turning on visualization output provides real-time insight, it’s generally not recom-
mended because it can significantly slow down the code, especially in parallel executions. Regardless of
this setting, HDF5 state files are always generated. For post-simulation visualization, the recommended
approach is to use the posti_visu tool to create ParaView-compatible files. Currently, only the VTK
output format is supported (by setting OutputFormat=3), as Tecplot output is unavailable due to GPL
licensing restrictions.

38 Chapter 5. Tutorials

https://hopr.readthedocs.io/en/latest/

FLEXI Documentation, Release 24.10

Interpolation

! == !
! INTERPOLATION
! == !
N = 3
NAnalyze = 10

The parameter N sets the degree of the solution polynomial. In this example, the solution is approximated
by a polynomial of degree 3 in each spatial direction. This results in (𝑁 +1)3 = 64 degrees of freedom
for each (3D) element. In general, N can be chosen to be any integer greater or equal to 1, however, the
discretization and the timestep calculation has not extensively been tested beyond 𝑁 ≈ 23. Usually, for
a good compromise of performance and accuracy is found for 𝑁 ∈ [3, .., 9]. NAnalyze determines the
polynomial degree for the analysis routines, i.e., the accuracy of the calculation of error norms or test
case specific integrals during the computation. A good rule of thumb is to set 𝑁𝐴𝑛𝑎𝑙𝑦𝑧𝑒 = 2×𝑁 .

Numerical Mesh

! == !
! MESH
! == !
MeshFile = cavity2x2_mesh.h5
useCurveds = F

BoundaryName = BC_free
BoundaryType = (/2,1/)
BoundaryName = BC_wall_left
BoundaryType = (/4,1/)
BoundaryName = BC_wall_right
BoundaryType = (/4,1/)
! BoundaryName = BC_wall_lower
! BoundaryType = (/4,1/)

The parameter MeshFile contains the name of the HOPR mesh file in HDF5 format (and/or the full
path to it). UseCurveds indicates whether the mesh is considered to be curved, i.e. if high-order mesh
information should be used. Setting this to F can be used to discard high-order information in the mesh
file and treat it as a linear mesh. For the current tutorial, the meshes are linear by design. The boundary
conditions are set via the BoundaryName identifier, which must be present in the mesh file and thus match
the BoundaryName identified used during mesh creation. Each line containing the boundary name must
be followed by a line containing the BoundaryType identified that what kind of boundary is to be applied
to the face. A list of types available for the Navier-Stokes equations can be found in table Table 4.1. For
types that require additional information (like Dirichlet boundaries), the second index in BoundaryType
refers to the RefState (short for reference state) which is used to determine the unknowns / quantities
from the outside for this boundary condition. For example, for a Dirichlet inflow boundary (Type 2),
the full reference state is set at the boundary. Here, BoundaryType= (/2,1/) indicates that the first
reference state vector listed below is set at this boundary (the lid part of the cavity). Note that the refer-
ence vectors are always in primitive variables, i.e. (𝜌, 𝑢, 𝑣, 𝑤, 𝑝)𝑇 unless specified otherwise. The same
reference state is also chosen for the boundaries BC_wall_left and BC_wall_right. These bound-
aries chosen as isothermal walls (Type 4), so a wall temperature needs to be specified - this is computed
from the primitive variables in the associated reference state. For the 𝑧−oriented faces omitted here,

5.4. Lid-driven Cavity 39

FLEXI Documentation, Release 24.10

periodic boundary conditions are chosen which must be specified in HOPR to pre-compute the correct
connectivity information.

Note that the lines for the lower wall boundary are commented out. In this case, the boundary conditions
set in HOPR will be retained and not overwritten here. Later, when running FLEXI with these settings,
it is good practice to inspect the boundary condition information as understood by FLEXI. In this case,
the output of FLEXI to the console should look like the following.

--
BoundaryName	BC_wall_left	*CUSTOM
BoundaryType	(/ 4, 1 /)	*CUSTOM
BoundaryName	BC_wall_right	*CUSTOM
BoundaryType	(/ 4, 1 /)	*CUSTOM
BoundaryName	BC_free	*CUSTOM
BoundaryType	(/ 2, 1 /)	*CUSTOM
Boundary in HDF file found	BC_free	
was	2 0	
is set to	2 1	
Boundary in HDF file found	BC_wall_left	
was	4 1	
is set to	4 1	
Boundary in HDF file found	BC_wall_right	
was	4 1	
is set to	4 1	
...		
BOUNDARY CONDITIONS	Name Type State Alpha	
	BC_zminus 1 0 1	
	BC_zplus 1 0 -1	
	BC_wall_lower 4 1 0	
	BC_free 2 1 0	
	BC_wall_left 4 1 0	
	BC_wall_right 4 1 0	
...

Equation System

! == !
! EQUATION
! == !
IniExactFunc = 1
IniRefState = 2
RefState = (/1.0,1.,0.,0.,71.4285714286/)
RefState = (/1.0,0.,0.,0.,71.4285714286/)
mu0 = 0.01
R = 1
Pr = 0.72
kappa = 1.4

The equation system in use is set during compilation. However, these equations are unclosed without
initial conditions and reference data for the boundary conditions. The parameter IniExactFunc specifies

40 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

which solution or function should be used to fill the initial solution vector, i.e. it specifies what the starting
flow field looks like. Setting this to 1 selects a uniform initial state in the whole domain. Note that this
solution is also used to compute the errors norms and can also be time-dependent. The reference state
itself used for the initial function is defined by the parameter IniRefstate, in this case, the second one
is used. As described above, each RefState is given in primitive variables. Here, the second reference
state describes a fluid at rest and is used to initialize a resting fluid in the cavity. The first state is used
to determine the driving flow at the top of the cavity (and to compute the wall temperatures for the
boundaries). Constant flow properties like the gas constant correspond to the values given in Table 5.6.
These define the gas dynamics in combination with the ideal gas law 𝑝 = 𝜌𝑅𝑇 .

Important: FLEXI does not distinguish between dimensional and non-dimensional quantities. It is
the user’s responsibility to set all data consistently. For anything other than an ideal gas with constant
viscosity and heat conductivity, physically meaningful quantities should be set.

Table 5.6: Material properties for the lid-driven cavity tutorial.

Variable Value Description
mu0 0.1 Dynamic viscosity 𝜇
R 1 Ideal gas constant 𝑅
kappa 1.4 Isentropic coefficient 𝜅
Pr 0.72 Prandtl number Pr

From these settings, the Mach and Reynolds number can be computed as follows, taking into account a
reference cavity length of 1 and the magnitude of the driving velocity. Since we are comparing against
an incompressible reference solution, setting the Mach number to 0.1 is a good compromise between
accuracy and efficiency of the explicit time integration.

𝑀𝑎𝑐ℎ = 𝑢/𝑐 = 1.0/

√︂
𝜅
𝑝

𝜌
= 1.0/10.0 = 0.1

𝑅𝑒 =
𝑢𝐿𝜌

𝜇0
=

1.0

0.01
= 100

Temporal Discretization

! == !
! TIMEDISC
! == !
TEnd = 5.0
Analyze_dt = 0.1
nWriteData = 1
CFLscale = 0.9
DFLscale = 0.4

The parameter TEnd determines the end time of the solution, Analyze_dt the interval at which the
analysis routines (like error computation, checking of wall velocities etc. see below) are called. The
multiplier nWriteData determines the interval at which full solution state files in HDF5 format are
written to the file system, e.g. in this case nWriteData× Analyze_dt= 0.1 is the interval for writing to
disc. The CFL and DFL numbers determine the explicit time step restriction for the advective and viscous

5.4. Lid-driven Cavity 41

FLEXI Documentation, Release 24.10

parts. Note that these values should always be chosen to be < 1. However, since the determination of
the timestep includes some heuristics, both values might require to be chosen even more conservatively.

Simulation and Results

We proceed by running the code with the following command.

flexi parameter_flexi.ini

If FLEXI was compiled with MPI support, it can also be run in parallel with the following command.
Here, <NUM_PROCS> is an integer denoting the number of processes to be used in parallel.

mpirun -np <NUM_PROCS> flexi parameter_flexi.ini

Important: FLEXI uses an element-based domain decomposition approach for parallelization. Con-
sequently, the minimum load per process is one grid element, i.e. do not use more processes than grid
elements!

Running the code prints all output to STDOUT. If the run completes successfully, the last lines should
appear similar to the following (condensed) output. After a successful run, the directory should contain
additional generated files named <PROJECTNAME>_State_<TIMESTAMP>.h5. Each file stores the so-
lution vector of the conserved variables at each interpolation node at a specific time, corresponding to
multiples of Analyze_dt.

--
Sys date : 07.11.2024 13:02:23
CALCULATION TIME PER STAGE/DOF: [4.64195E-07 sec]
EFFICIENCY: CALCULATION TIME [s]/[Core-h]: [1.23651E+04 sec/h]
Timestep : 4.1665427E-03
#Timesteps : 1.2000000E+03
WRITE STATE TO HDF5 FILE... DONE! [0.00 sec]
Sim time : 5.000E+00
L_2 : 1.269E-03 1.810E-01 1.127E-01 5.762E-14 1.568E-01
L_inf : 8.090E-03 9.497E-01 3.924E-01 2.020E-13 1.713E+00
BodyForces (Pressure, Friction) :
BC_wall_lower 0.00E+00 -7.14E+01 0.00E+00 -2.73E-03 1.80E-05 3.63E-15
BC_wall_left -7.13E+01 0.00E+00 0.00E+00 2.77E-04 1.91E-02 3.34E-15
BC_wall_right 7.14E+01 -8.74E-15 -1.61E-15 9.38E-04 -4.15E-02 -1.78E-15
Wall Velocities (mean/min/max) :
BC_wall_lower 1.138E-02 3.164E-03 2.183E-02
BC_wall_left 3.604E-02 2.169E-03 1.488E-01
BC_wall_right 1.114E-01 2.742E-03 3.930E-01
MeanFlux through boundaries :

BC_zminus 3.539E-14 -1.047E-14 -5.820E-15 7.139E+01 8.846E-12
BC_wall_lower 0.000E+00 -2.737E-03 -7.140E+01 3.633E-15 8.844E-04

BC_free 3.913E-05 -1.048E-01 7.142E+01 2.564E-15 -4.560E-02
BC_wall_left 0.000E+00 -7.137E+01 1.914E-02 3.345E-15 1.024E-02
BC_wall_right 0.000E+00 7.148E+01 -4.159E-02 -3.400E-15 3.555E-02
--

(continues on next page)

42 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

(continued from previous page)

Time = 0.5000E+01 dt = 0.4169E-02 ETA [d:h:m]:<1 min |==>| [100.00%]
===
FLEXI RUNNING Tutorial_Cavity_Re100_mesh2x2...! [0.38 sec] [0:00:00:00]
==
==
FLEXI FINISHED!! [0.38 sec] [0:00:00:00]
==

Since we start the simulation from a fluid at rest, it will take some iterations / time steps to achieve a
steady state solution. One way to check if the solution has converged to a steady state is to check some
characteristic quantities. Note that since the boundary conditions are applied weakly in a DG setting, a
velocity slip at walls can occur, with its magnitude depending on the local wall resolution. Thus, the
velocities at the walls offer a measure of the solution convergence. In Fig. 5.8, the temporal evolution of
the velocities at the lower wall are plotted over time for 4 different simulations. For all cases, a sufficiently
stationary solution has been achieved at 𝑡𝑒𝑛𝑑 = 5.

Fig. 5.8: Time evolution of wall velocity at lower wall for the 𝑅𝑒 = 100 lid-driven cavity case.

A contour plot of the velocity magnitude at the end time is given in Fig. 5.9. To generate this plot, convert
the State files to a ParaView format using the posti_visu tool.

For a more quantitative comparison with published data, you can generate a plot of the 𝑢-velocity on the
centerline (𝑥 = 0) of the cavity. Fig. 5.10 shows the results for the 4 simulations run here, along with
published data available in [19], [20].

For simulation 1, the agreement with literature results is fair. This is due to the coarse resolution with
2× (3 + 1) = 8 degrees of freedom in 𝑥- and 𝑦-direction. Doubling the grid elements results in visible
improvement. Doubling the grid resolution again (simulation 3), the agreement with the published data
is excellent. It should be noted that the same accuracy can be achieved by increasing 𝑁 and keeping the
coarse grid. Simulation 3 and 4 have nearly identical results, although the number of degrees of freedom
differs by a factor of 2. This is an indication of the excellent convergence properties of high-order schemes
for smooth problems.

5.4. Lid-driven Cavity 43

FLEXI Documentation, Release 24.10

Fig. 5.9: Contours of velocity magnitude for the 𝑅𝑒 = 100 lid-driven cavity case.

Fig. 5.10: Comparison of centerline velocities for the 𝑅𝑒 = 100 lid-driven cavity case with literature.

44 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

5.4.3 Advanced Tutorial | Flow at Re=400

In this section, we build on the concepts covered in the basic tutorial. While the general setup of the
simulation remains the same, we increase the Reynolds number, which requires a new, higher-resolution
mesh to capture the finer flow details. Additionally, this part introduces basic code customization by
showing how to add a new function for custom initial or boundary conditions. Before diving in, it is
recommended that you have completed the basic tutorial, have access to at least four computational cores
(or be prepared for longer run times), and be comfortable with the modern Fortran syntax. The basic
tutorial is contained in the Advanced_Re400 subfolder of the tutorials\cavity directory.

Mesh Generation

To account for the increased Reynolds number, the number of elements in the 𝑥 − 𝑦-plane is increased
to 12 × 12. Also, a stretching in the 𝑦−direction is introduced, as depicted in Fig. 5.11. You can
generate your own mesh or re-use the provided one, labeled cavity12x12_stretch_mesh.h5. In
parameter_hopr.ini, the following line introduces an exponential stretching.

factor = (/1.0,-1.2,1./) ! stretching with constant growth factor
! (+/- changes direction)

Fig. 5.11: Stretched mesh for the 𝑅𝑒 = 400 lid-driven cavity case.

Custom Initial / Boundary Function

To set up a custom boundary condition for the top boundary, which drives the cavity flow, we define a
function for the velocity profile. In this, we follow the suggestions from [20], where the 𝑢(𝑥) velocity at
the lid is given as

𝑢(𝑥) =

⎧⎪⎨⎪⎩
𝑐1𝑥

4 + 𝑐2𝑥
3 + 𝑐3𝑥

2 + 𝑐4𝑥, if 0 ≤ 𝑥 < 0.2

𝑑1𝑥
4 + 𝑑2𝑥

3 + 𝑑3𝑥
2 + 𝑑4𝑥+ 𝑑5, if 0.8 < 𝑥 ≤ 1.0

1, otherwise
(5.1)

with

[𝑐1, 𝑐2, 𝑐3, 𝑐4] =1000× [4.9333,−1.4267, 0.1297,−0.0033]

[𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5] =10000× [0.4933,−1.8307, 2.5450, 1− .5709, 0.3633]

5.4. Lid-driven Cavity 45

FLEXI Documentation, Release 24.10

This assumes the top boundary to be from 𝑥 ∈ [0, 1], as is the case in our domain. To add this new
function to FLEXI, locate the file src/equations/navierstokes/idealgas/exactfunc.f90 and
open it in the text editor of your choice. Locate the SUBROUTINE ExactFunc, which provides functions
with analytic solutions for the boundary condition, initial condition, and analysis routines of the code.
The header of the routine you are looking for is shown below.

Listing 5.2: Header of the ExactFunc subroutine.

!==
!> Specifies all the initial conditions. The state in conservative
!> variables is returned. t is the actual time. dt is only needed
!> to compute the time dependent boundary values for the RK scheme
!> for each function resu and the first and second time derivative
!> resu_t and resu_tt have to be defined (is trivial for constants)
!==
SUBROUTINE ExactFunc(ExactFunction,tIn,x,resu,RefStateOpt)
! MODULES
USE MOD_Preproc ,ONLY: PP_PI
USE MOD_Globals ,ONLY: Abort
USE MOD_Mathtools ,ONLY: CROSS
USE MOD_Eos_Vars ,ONLY: Kappa,sKappaM1,KappaM1,KappaP1,R
USE MOD_Exactfunc_Vars ,ONLY: IniCenter,IniHalfwidth,IniAmplitude,
→˓IniFrequency,IniAxis,AdvVel
USE MOD_Exactfunc_Vars ,ONLY: MachShock,PreShockDens
USE MOD_Exactfunc_Vars ,ONLY: P_Parameter,U_Parameter
USE MOD_Exactfunc_Vars ,ONLY: JetRadius,JetEnd,JetAmplitude
USE MOD_Equation_Vars ,ONLY: IniRefState,RefStateCons,RefStatePrim
USE MOD_Timedisc_Vars ,ONLY: fullBoundaryOrder,CurrentStage,dt,RKb,RKc,t
USE MOD_TestCase ,ONLY: ExactFuncTestcase
USE MOD_EOS ,ONLY: PrimToCons,ConsToPrim
#if PARABOLIC
USE MOD_Eos_Vars ,ONLY: mu0
USE MOD_Exactfunc_Vars ,ONLY: delta99_in,x_in
#endif
IMPLICIT NONE
!---
! INPUT/OUTPUT VARIABLES
INTEGER,INTENT(IN) :: ExactFunction
REAL,INTENT(IN) :: x(3)
REAL,INTENT(IN) :: tIn
REAL,INTENT(OUT) :: Resu(PP_nVar)
INTEGER,INTENT(IN),OPTIONAL :: RefStateOpt
!---
! LOCAL VARIABLES
INTEGER :: RefState
REAL :: tEval
REAL :: Resu_t(PP_nVar),Resu_tt(PP_nVar),ov
REAL :: Frequency,Amplitude
REAL :: Omega
REAL :: Vel(3),Cent(3),a
REAL :: Prim(PP_nVarPrim)

(continues on next page)

46 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

(continued from previous page)

REAL :: r_len
REAL :: Ms,xs
REAL :: Resul(PP_nVar),Resur(PP_nVar)
REAL :: random
REAL :: du, dTemp, RT, r2
REAL :: pi_loc,phi,radius
REAL :: h,sRT,pexit,pentry
#if PARABOLIC
! needed for blasius BL
INTEGER :: nSteps,i
REAL :: eta,deta,deta2,f,fp,fpp,fppp,fbar,fpbar,
→˓fppbar,fpppbar
REAL :: x_eff(3),x_offset(3)
#endif
!===

To add equation (5.1) to the code, add a new CASE to the routine. In this CASE, define the state vector
for the primitive variables, and then convert them to conservative ones (see e.g., CASE(8) for how this
is done). You might also need to introduce some new local variables for this routine. To check if your
changes are syntactically correct, compile the code with your changes. If the compilation process was
not successful, check the compiler output for any error messages to diagnose the issue.

To benefit from this tutorial, it is recommend that you do try to complete this programming task. For
reference, the listing below shows an example code for a correct implementation as CASE(9). Note that
in the example code, we do not specify the full primitive state vector within the routine, but re-use the
IniRefState and just overwrite the 𝑢-velocity. This is a matter of choice, but it allows to set the Mach
number by setting the IniRefState accordingly.

Listing 5.3: Example code for a correct implementation from [20].

CASE(9) ! Lid driven cavity flow from Gao, Hesthaven, Warburton
! "Absorbing layers for weakly compressible flows", JSC, 2016
! Special "regularized" driven cavity BC to prevent singularities
! at corners. Top BC assumed to be in x-direction from 0..1

Prim = RefStatePrim(:,RefState)
IF (x(1).LT.0.2) THEN

prim(VEL1)=1000*4.9333*x(1)**4-1.4267*1000*x(1)**3+0.1297*1000*x(1)**2-0.
→˓0033*1000*x(1)
ELSEIF (x(1).LE.0.8) THEN
prim(VEL1)=1.0

ELSE
prim(VEL1)=1000*4.9333*x(1)**4-1.8307*10000*x(1)**3+2.5450*10000*x(1)**2-

→˓1.5709*10000*x(1)+10000*0.3633
ENDIF
CALL PrimToCons(prim,Resu)

Note: From now on, we refer to the above CASE(9) as the case number in question while yours might
differ.

5.4. Lid-driven Cavity 47

FLEXI Documentation, Release 24.10

Simulation Parameters

To setup the simulation, you can either modify the parameter_flexi.ini files from the basic tutorial
or use the ones provided in the Advanced_Re400 directory. We will conduct two simulations for the
advanced configuration. The first one uses the constant driving flow boundary conditions as before while
the second one utilizes the new custom equation specified as equation CASE(9). In both cases, we need
to modify the mesh file, the fluid viscosity (in order to set the Reynolds number), and the end time of the
simulation. Here, we chose TEnd=100 to account for the longer accommodation period required for the
simulation to reach a quasi-steady state. As will be seen later, 100 is very conservative, so feel free to
lower this value as you see fit.

MeshFile = cavity12x12_stretch_mesh.h5
[...]
mu0 = 0.0025
[...]
TEnd = 100.0

For the custom boundary condition case, the parameter file needs to be adjusted to include the new
boundary settings. According to Table 4.1, Dirichlet boundary conditions with a specified reference
equation (instead of a reference state) are of type 22. The second index in the entry thus refers to the
equation (CASE(9)) which we have programmed above.

BoundaryName = BC_free
BoundaryType = (/22,9/)

Simulation and Results

We proceed by running the code with the following command. If you chose to use the provided .ini files,
change the parameter file to parameter_flexi_custombc.ini for the second run.

flexi parameter_flexi.ini

If FLEXI was compiled with MPI support, it can also be run in parallel with the following command.
Here, <NUM_PROCS> is an integer denoting the number of processes to be used in parallel.

mpirun -np <NUM_PROCS> flexi parameter_flexi.ini

The evolution of the mean velocity of the lower wall is given in Fig. 5.12. Note the difference in the axis
scales compared to Fig. 5.8. It is evident that the flow reaches steady state after about 𝑡 = 35.

In the following, fig:cavity_re400_velcomp and Fig. 5.14 show the flow field and comparison of
the centerline velocities with published results [19], [20].

48 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

Fig. 5.12: Time evolution of wall velocity at lower wall for the 𝑅𝑒 = 400 lid-driven cavity case.

Fig. 5.13: Steady state solution of velocity magnitude of 𝑅𝑒 = 400 lid driven cavity. Left: constant
boundary condition, right: custom boundary condition.

Fig. 5.14: Evolution of wall velocities at the lower wall for 𝑅𝑒 = 400 lid driven cavity simulations.

5.4. Lid-driven Cavity 49

FLEXI Documentation, Release 24.10

5.5 Taylor Green Vortex

This tutorial describes how to set up and run a basic test case for turbulent flows, the Taylor–Green
vortex (TGV) [21]. The TGV is started from eight Fourier modes with the initial conditions given by
Gassner et al. [11]. In this tutorial, we will learn how to avoid catastrophic failure of the code due to
non-linear instabilities. This is done by using polynomial dealiasing or entropy/energy stable split flux
formulations. In a second step, we add the sub-grid scale (SGS) model of Smagorinsky. The tutorial is
located at tutorials/tgv.

5.5.1 Flow description

The initial condition to the (TGV) is a sinus distribution in the 𝑢 and 𝑣 velocity components. This leads
to rapid production of turbulent structures, after a short initial laminar phase. While the test case is
incompressible in principle, we solve it here in a compressible setting. The chosen Mach number with
respect to the highest velocity in the field is 𝑀 = 0.1. The Reynolds number of the flow is defined as
1/𝜇 = 6.25 · 10−4. The domain is set up as a triple periodic box with edge length 𝐿 = 2𝜋.

Fig. 5.15: 3D visualization of the Q-criterion of the Taylor–Green vortex.

5.5.2 Mesh Generation

We use a mesh with 4 cells per direction for the tutorial. In case you want to generate other meshes, the
parameter file for HOPR is included in the tutorial directory (parameter_hopr.ini), together with the
default mesh. Using 4 cells with a polynomial degree of 𝑁 = 7 results in a typical large eddy setup of
32 degrees of freedom (DOF) per direction.

50 Chapter 5. Tutorials

https://hopr.readthedocs.io/en/latest/

FLEXI Documentation, Release 24.10

5.5.3 Compiler Options

Depending on the dealiasing strategy used, FLEXI should be compiled either with the
tgv_overintegration, tgv_split_lobatto or tgv_split_gauss preset using the following
commands

cmake -B build --preset tgv_overintegration
cmake --build build

cmake -B build --preset tgv_split_lobatto
cmake --build build

or

cmake -B build --preset tgv_split_gauss
cmake --build build

respectively.

5.5.4 Simulation Parameters

The parameter file to run the simulation is supplied as parameter_flexi.ini.

Interpolation

! == !
! INTERPOLATION
! == !
N = 7

The parameter N sets the degree of the solution polynomial. In this example, the solution is approximated
by a polynomial of degree 3 in each spatial direction. This results in (𝑁 +1)3 = 512 degrees of freedom
for each (3D) element. In general, N can be chosen to be any integer greater or equal to 1, however, the
discretization and the timestep calculation has not extensively been tested beyond 𝑁 ≈ 23. Usually, for
a good compromise of performance and accuracy is found for 𝑁 ∈ [3, .., 9].

Overintegration

To apply polynomial dealiasing there are the following options in FLEXI.

! == !
! OVERINTEGRATION (ADVECTION PART ONLY)
! == !
OverintegrationType = 0 ! 0:off

! 1:cut-off filter
! 2: conservative cut-off

NUnder = 7 ! specifies effective polydeg
(continues on next page)

5.5. Taylor Green Vortex 51

https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/flexi_index.html

FLEXI Documentation, Release 24.10

(continued from previous page)

! (modes > NUnder are thrown away)
! only for types 1 and 2

In mode 0, polynomial dealiasing is disabled. FLEXI has two ways of doing polynomial dealiasing. In
mode 1, a filter is applied to the time-update 𝒥𝑈𝑡. The filter is formulated as a Galerkin projection of
degree 𝑁 to NUnder, the effective resolution is thus NUnder. Mode 2 is in principle identical to mode
1, but takes into account non-linear metric terms present in curved meshes. For the linear mesh in this
tutorial, the result is identical. Since mode 2 is slightly more computational expensive, we omit it in the
present tutorial.

Kinetic/Entropy Stable Formulations

An additional dealiasing technique is provided by entropy/kinetic energy stable split formulations of the
DGSEM. In FLEXI, implementations either on Legendre-Gauss-Lobatto or on Legendre-Gauss
integration points are available and depending on the chosen compile option. The respective split flux
formulation can be specified by the following option. The most commonly used are PI, CH and SD.
While the option PI [14] enables the use of a kinetic energy stable formulation, the option CH [15]
provides an entropy conservative formulation of the DGSEM. Finally, the parameter choice SD yields a
flux differencing form of the DGSEM which is equivalent to the standard DGSEM formulation.

! == !
! SPLIT DG
! == !
SplitDG = PI ! PI: kinetic energy preserving formulation

! CH: entropy conserving formulation
! SD: standard DGSEM in flux differencing formulation

Riemann Solvers

Besides the inherent filtering properties of the DG operator, the only additional artificial dissipation is
then provided by the Riemann solver used for the inter-cell fluxes. You can change the Riemann solver
to see the effect with the following parameters:

! == !
! Riemann
! == !
Riemann = RoeEntropyFix ! Riemann solver to be used:

! LF, HLLC, Roe,
! RoeEntropyFix, HLL, HLLE, HLLEM

Attention: Be aware that from the above listed Riemann solvers, only the implementations of LF,
Roe and RoeEntropyFix are compatible for the use with split flux formulations.

52 Chapter 5. Tutorials

https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/flexi_index.html

FLEXI Documentation, Release 24.10

Sub-Grid Scale Model

To add sub-grid scale (SGS) model by Smagorinsky, set the parameter eddyViscType = 1. Here, CS
is the Smagorinsky constant which is usually chosen around CS = 0.1 for isotropic turbulence (such as
in the TGV).

! == !
! LES MODEL
! == !
eddyViscType = 0 ! Choose LES model, 1:Smagorinsky
CS = 0.1 ! Smagorinsky constant
PrSGS = 0.6 ! turbulent Prandtl number

5.5.5 Simulation and Results

We proceed by running the code with the following command.

flexi parameter_flexi.ini

If FLEXI was compiled with MPI support, it can also be run in parallel with the following command.
Here, <NUM_PROCS> is an integer denoting the number of processes to be used in parallel.

mpirun -np <NUM_PROCS> flexi parameter_flexi.ini

Important: FLEXI uses an element-based domain decomposition approach for parallelization. Con-
sequently, the minimum load per process is one grid element, i.e. do not use more processes than grid
elements!

This test case generates an analysis output file named <PROJECTNAME>_TGVAnalysis.csv, which we
use to examine the results. Instead of focusing on flow visualization, this tutorial centers on analyzing
key quantities directly from this analysis output data. Among other interesting quantities, the analysis file
contains the incompressible dissipation rate, stored in the second column of the file. This is the resolved
dissipation of the gradient field, computed as the integral over the domain of the strain rate tensor norm
𝑆𝑖𝑗𝑆𝑖𝑗 , times viscosity times 2. We will use this quantity in the tutorial to verify your results. You can
visualize the csv file in your favored plotting tool, e.g., within ParaView using the option Line Chart
View.

DR𝑆 =
2𝜇

𝜌0‖Ω‖

∫︁
Ω
𝑆𝑖𝑗𝑆𝑖𝑗 𝑑x

5.5. Taylor Green Vortex 53

https://www.paraview.org/

FLEXI Documentation, Release 24.10

Fig. 5.16: Incompressible dissipation rate of the Taylor–Green vortex over time.

Part I: Crashing Simulation

First, we run FLEXI without any kind of dealiasing technique. For this, use the FLEXI version com-
piled with the preset tgv_overintegration. We will find that the code crashes, once scale pro-
duction becomes relevant. The same holds for the split form DGSEM if used with the SD split flux
and the preset tgv_split_lobatto or tgv_split_lobatto- You can compare your result to the
crash_no_dealiasing.csv file in the tutorial folder.

Part II: Overintegration

We now use overintegration by changing the respective settings in the parameter_flexi.ini file as
described above. Set OverintegrationType = 1 and specify N = 11 and NUnder = 7. You can
compare your result to the les_overintegration.csv file in the tutorial folder.

Part III: Split Formulation

We now use the split DGSEM formulation as a dealiasing technique. Please be aware to use FLEXI either
compiled with the preset tgv_split_lobatto or tgv_split_gauss. Set SplitDG = PI and specify
N = 7. Don’t forget to switch off overintegration. You can compare your result to the les_split.csv
file in the tutorial folder.

54 Chapter 5. Tutorials

https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/flexi_index.html
https://numericsresearchgroup.org/flexi_index.html

FLEXI Documentation, Release 24.10

Fig. 5.17: Incompressible dissipation rate of the Taylor–Green vortex over time without any dealiasing
technique.

Fig. 5.18: Incompressible dissipation rate of the Taylor–Green vortex over time with overintegration.

5.5. Taylor Green Vortex 55

FLEXI Documentation, Release 24.10

Fig. 5.19: Incompressible dissipation rate of the Taylor–Green vortex over time with a kinetic energy
stable formulation.

Part VI: Explicit LES model

To see the effect of adding explicit eddy viscosity, we activate the LES model (Smagorinsky) as de-
scribed above via eddyViscType = 1. To obtain the reference result in les_smago.csv, set CS =
0.1. Don’t forget to switch back to the compiler preset tgv_overintegration and deactivate overin-
tegration OverintegrationType = 0. Use a polynomial degree of N=7.

Part V: Have Fun!

Feel free to play around with the effect of the constant in the Smagorinsky model or compare the different
dealiasing techniques with respect to accuracy or compute time. Most important, have fun with FLEXI.

5.6 SOD Shock Tube

The Sod shock tube example [22] is one of the most basic test cases to investigate the shock cap-
turing capabilities of a CFD code. A initial discontinuity is located in the middle of the one di-
mensional domain 𝑥 ∈ [0, 1]. The left and right states are given by 𝜌 = 1, 𝑣 = 0, 𝑝 = 1 and
𝜌 = 0.125, 𝑣 = 0, 𝑝 = 0.1. The tutorial is located at tutorials/sod. These states are already set
as RefState in the parameter_flexi.ini file.

56 Chapter 5. Tutorials

https://numericsresearchgroup.org/flexi_index.html

FLEXI Documentation, Release 24.10

Fig. 5.20: Incompressible dissipation rate of the Taylor–Green vortex over time with the Smagorinsky
model as a sub grid scale model.

5.6.1 Mesh Generation

In the tutorial directory, we provide the necessary mesh files, along with a parameter files for HOPR to
generate these meshes. You can recreate any mesh by running the following command. A full tutorial
on how to run HOPR is available at the [HOPR documentation][hopr].

hopr parameter_hopr.ini

5.6.2 Build Configuration

This example requires the Finite Volume (FV) shock capturing and the Euler equations. In this tutorial, we
will investigate the shock capturing based on switching the DG representation to FV sub-cells. Therefore,
[FLEXI][flexi] should be compiled either with the sod preset using the following command

cmake -B build --preset sod
cmake --build build

5.6. SOD Shock Tube 57

FLEXI Documentation, Release 24.10

5.6.3 Simulation Parameters

The parameter file to run the simulation is supplied as parameter_flexi.ini.

Finite Volume Shock Capturing

The options for the Finite Volume shock capturing are contained in the ‘FV-Subcell’ section.

! == !
! FV-Subcell
! == !
IndicatorType = Persson
IndVar = 1 ! first conservative (density)

! used for indicator evaluation
IndStartTime = 0.001 ! until this time FV is used in

! the whole domain

FV_LimiterType = MinMod
FV_IndUpperThreshold = -3. ! upper threshold (if IndValue

! above this value, switch to FV)
FV_IndLowerThreshold = -4. ! lower threshold (if IndValue

! below this value, switch to DG)

The IndicatorType parameter sets the type of indicator function used to detect DG elements con-
taining discontinuities. For this case, the Persson indicator [23] is applied, an element-local indicator
that compares the different modes of the DG polynomial. If the relative content in the highest mode
is high compared to the amount in the lower modes, the DG polynomial may show oscillatory behav-
ior. All indicator functions return a high value for “troubled” with discontinuities and low values for
smooth elements. The variable IndVar specifies the index within the conservative variable vector used
to evaluate the indicator function. Typically, pressure (index 6) is a good choice; however, for this test
case, density is used instead. IndStartTime specifies a time during which the actual indicator function
is overwritten by a high value to force the use of FV elements everywhere. This helps capture initial
discontinuities placed exactly at element boundaries, as element-local indicators like Persson can not
detect these discontinuities. FV_LimiterType sets the limiter used in the second-order FV reconstruc-
tion. FV_IndUpperThreshold and FV_IndLowerThreshold define thresholds for deciding in which
elements are represented by the DG method and where the FV sub-cell scheme should be used. While
a single threshold can theoretically suffice, it often leads to continuous switching between the DG and
the FV schemes. To avoid this, switching to FV only occurs if the indicator exceeds the upper threshold.
Switching back to DG only happens if the indicator value falls below the lower threshold.

5.6.4 Simulation and Results

We proceed by running the code with the following command.

flexi parameter_flexi.ini

This test case generates 5 state files name sod_State_>TIMESTAMP>.h5 for 𝑡 =
0.0, 0.05, 0.10, 0.15, 0.20.

58 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

Visualization

FLEXI relies on ParaView for visualization. In order to visualize the FLEXI solution, its format has
to be converted from the HDF5 format into another format suitable for Paraview. FLEXI provides a
post-processing tool posti_visu which generates files in VTK format with the following command.

posti_visu parameter_postiVisu.ini parameter_flexi.ini sod_State_0*

posti_visu generates two types of files which can be loaded into ParaView. vtu files contain either DG
or the FV part of the solution. The vtm-files combine the DG and FV vtu-file of every timestamp. It is
thus recommended to load the vtm-files into ParaView.

For this one-dimensional test case, apply the Plot Over Line filter in ParaView. When setting up the
filter, choose the X Axis as the line direction to create a line plot of the variable values along this axis.
The resulting plot should resemble the one shown in Fig. 5.21.

Fig. 5.21: Solution of the Sod shock tube at 𝑡 = 0.2.

5.7 Double Mach Reflection

The Double Mach Reflection is a classical test case to investigate the abilities of a numerical scheme
to represent shocks and contact discontinuities. It was proposed by Colella and Woodward [24] and
considers a Mach 10 oblique shock wave that hits a reflecting wall. The initial conditions are given by
the Rankine-Hugoniot conditions

(𝜌, 𝑣1, 𝑣2, 𝑝) =

⎧⎨⎩(8.0, 8.25 · cos(30∘),−8.25 · sin(30∘), 116.5) 𝑥 < 𝑥0 +
√︁

1
3𝑦

(1.4, 0.0, 0.0, 1.0) 𝑥 ≥ 𝑥0 +
√︁

1
3𝑦

, (5.2)

5.7. Double Mach Reflection 59

https://www.paraview.org

FLEXI Documentation, Release 24.10

where the wall at the bottom starts at 𝑥0 = 1
6 and the computational domain Ω = [0, 4] × [0, 1] is

discretized by an equidistant Cartesian mesh. This tutorial is located in the folder tutorials/dmr.

5.7.1 Mesh Generation

In the tutorial directory, we provide the necessary mesh files, along with a parameter files for HOPR to
generate these meshes. You can recreate any mesh by running the following command. A full tutorial
on how to run HOPR is available at the [HOPR documentation][hopr].

hopr parameter_hopr.ini

5.7.2 Flow Simulation

This example requires the finite volume (FV) shock capturing. Two variants of the shock capturing are
implemented in FLEXI, which are both based on the FV sub-cell approach. This approach subdivides
each DG element into FV sub-cells, where each cell corresponds to one degree of freedom of the initial
DG element. Thus, the total number of degrees of freedom is constant throughout the simulation, while
the DG and the FV operator are chosen independently for each individual element.

The first variant of the FV sub-cell approach switches DG elements into the FV sub-cell representation
such that the element-local solution is either a smooth polynomial (DG representation) or piecewise
constant (FV sub-cell), as detailed in [3]. The second variant of the FV sub-cell approach blends the
DG operator with the FV operator, while the solution itself always remains a DG polynomial, see [4] for
more details. In the following, both approaches will be applied to simulate the Double Mach Reflection.

Finite Volume Switching

In the switching-based shock capturing, the element-local solution is either given in DG representation
(FV_Elems=0) or interpolated to piecewise constant FV sub-cells (FV_Elems=1).

Build Configuration

The FV switching is enabled through the build option FLEXI_FV=SWITCH, the corresponding CMake
preset cmd_fvswitch is applied by running

cmake -B build --preset dmr_fvswitch
cmake --build build

Simulation Parameters

The simulation setup is defined in parameter_flexi_switch.ini and includes parameters for the
shock capturing via switching.

! == !
! FV-Subcell
! == !
IndicatorType = Jameson

(continues on next page)

60 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

(continued from previous page)

IndVar = 6 ! sixth variable (pressure)
! used for indicator evaluation

FV_LimiterType = 1 ! MinMod
FV_IndUpperThreshold = 0.010 ! upper threshold (if IndValue

! above this value, switch to FV)
FV_IndLowerThreshold = 0.005 ! lower threshold (if IndValue

! below this value, switch to DG)
FV_toDG_indicator = T
FV_toDG_limit = -5.5
FV_IniSupersample = T

The IndicatorType parameter sets the type of indicator function used to detect DG elements contain-
ing discontinuities. For this case, the Jameson indicator [23] is applied, an adaptation of the switching
function of the Jameson-Schmidt-Turkel scheme [25] to FV sub-cells. In contrast to the Persson indica-
tor, it is not element-local and therefore more robust for traveling discontinuities. All indicator functions
return a high value for “troubled” with discontinuities and low values for smooth elements. The variable
IndVar specifies the index within the variable vector used to evaluate the indicator function. Typically,
pressure (index 6) is a good choice and also used here. FV_toDG_indicator enables an additional Pers-
son indicator [23] for the switch from FV to DG. When an FV element is marked for transition to DG,
it is temporarily converted to a DG element and the Persson indicator is evaluated for this DG polyno-
mial to test if the polynomial is oscillating. Only in the case of a non-oscillatory solution, the solution
is converted to DG. Otherwise, the element retains the FV representation. This improves the simulation
stability when indicator functions defined on the FV sub-cells are used. In the given case, the Jameson in-
dicator only considers oscillations between adjacent degrees of freedom (DOFs), which may miss certain
high-frequency oscillations in the polynomial. The FV_toDG_limit parameter is then used as thresh-
old for additional Persson indicator, restricting the FV to DG transition to indicator values below this
choice. During initialization, by default the solution is initialized as DG polynomials for all elements. In
a second, step, the indicator function is evaluated to identify troubled elements which are then converted
to an FV representation. This can cause issues if discontinuities lie inside DG elements which leads to
strongly oscillating polynomials and invalid solutions, e.g., negative density, even after converting these
oscillating polynomials to FV. The FV_IniSupersample option enables a super-sampling of the initial
solution for every FV sub-cell, which removes the mentioned problems with oscillating polynomials. The
mean value of every FV sub-cell is computed by evaluating the initial solution in (𝑁 + 1) equidistant
points per dimension inside the sub-cell and then taking the arithmetic mean value.

Simulation and Results

We proceed by running the code with the following command.

flexi parameter_flexi_switch.ini

This test case generates 11 state files name dmr_SWITCH_State_<TIMESTAMP>.h5 for 𝑡 =
0.0, 0.02, . . . , 0.20.

5.7. Double Mach Reflection 61

FLEXI Documentation, Release 24.10

Visualization

FLEXI relies on ParaView for visualization. In order to visualize the FLEXI solution, its format has
to be converted from the HDF5 format into another format suitable for Paraview. FLEXI provides a
post-processing tool posti_visu which generates files in VTK format with the following command.

posti_visu parameter_postiVisu.ini parameter_flexi_switch.ini dmr_SWITCH_
→˓State_0000000.*

posti_visu generates two types of files which can be loaded into ParaView. vtu files contain either DG
or the FV part of the solution. The vtm-files combine the DG and FV vtu-file of every timestamp. It is
thus recommended to load the vtm-files into ParaView. The result at 𝑡 = 0.2 should look like in figure
Fig. 5.22.

Fig. 5.22: Distribution of DG and FV elements (top) and density (bottom) of Double Mach Reflection at
𝑡 = 0.2.

Finite Volume Blending

Next, we will investigate the blending approach. In this tutorial we use an entropy-stable split formulation
to ensure the stability of the FV blending approach, with more details on the split formulation given later
in section Plane Turbulent Channel Flow. For the FV sub-cell blending, the elements are not switched
completely to the FV operator, but instead the DG operator 𝑅𝐷𝐺 and FV operator 𝑅𝐹𝑉 are blended as

𝑅 = 𝛼𝑅𝐹𝑉 + (1− 𝛼)𝑅𝐷𝐺

with the blending coefficient 𝛼. Instead of switching between a DG and a FV discretization, the blending
allows a continuous transition between the DG and FV operators. The blending factor is computed based
on the indicator proposed by [4], which is parameter-free and does not require any parameters to be tuned
by the user.

62 Chapter 5. Tutorials

https://www.paraview.org

FLEXI Documentation, Release 24.10

Build Configuration

The FV blending is enabled through the build option FLEXI_FV=BLEND. The FV blending requires to
select the Gauss-Lobatto node set by setting FLEXI_NODETYPE=GAUSS-LOBATTO and to enable the split-
form DG with FLEXI_SPLIT_DG=ON. FLEXI should be compiled using the dmr_fvblend present.

cmake -B build --preset dmr_fvblend
cmake --build build

Simulation Parameters

The simulation setup is defined in parameter_flexi_blend.ini and the simulation parameters spe-
cific to the FV blending approach are summarized below.

! == !
! FV-Subcell
! == !
IndicatorType = Jameson
IndVar = 6 ! sixth variable (pressure)

! used for indicator evaluation
FV_LimiterType = 1 ! MinMod
FV_alpha_min = 0.01 ! Lower bound for alpha (all

! elements below threshold are
! treated as pure DG)

FV_alpha_max = 0.5 ! Maximum value for alpha. All
! blending coefficients exceeding
! this value are clipped

FV_alpha_ExtScale = 0.5 ! Scaling factor by which the
! blending factor is scaled when
! propagated to its neighbor.
! Has to be between 0 and 1.

FV_nExtendAlpha = 1 ! Number of times this propagation
! of the blending should be performed
! (number of element layers).
! Higher values correspond to a wider
! sphere of influence.

FV_doExtendAlpha = T ! Blending factor is prolongated
! into neighboring elements

Simulation and Results

Similarly to the switching-based approach, we proceed by running the code with the following command.

flexi parameter_flexi_blend.ini

This test case generates 11 state files name dmr_BLEND_State_<TIMESTAMP>.h5 for 𝑡 =
0.0, 0.02, . . . , 0.20.

5.7. Double Mach Reflection 63

FLEXI Documentation, Release 24.10

Visualization

FLEXI relies on ParaView for visualization. In order to visualize the FLEXI solution, its format has
to be converted from the HDF5 format into another format suitable for Paraview. FLEXI provides a
post-processing tool posti_visu which generates files in VTK format with the following command.

posti_visu parameter_postiVisu.ini parameter_flexi_blend.ini dmr_BLEND_State_
→˓0000000.*

As the solution is always represented by DG polynomials. posti_visu generated only the DG part of the
solution. Thus, load the generated vtm-files into ParaView. The result at 𝑡 = 0.2 should look like in
figure Fig. 5.23.

Fig. 5.23: Distribution of the blending factor 𝛼 between the DG and FV operators (top) and density
(bottom) of Double Mach Reflection at 𝑡 = 0.2.

5.8 Plane Turbulent Channel Flow

This tutorial describes how to set up and run the test case of a turbulent flow in a plane channel geometry.
We will learn how to use the split-form DG method to guarantee non-linear stability of the turbulent flow
simulation. In a second step, we add the sub-grid scale (SGS) model of Smagorinsky combined with
Van Driest type damping to run stable wall-bounded turbulent flows with explicit small scale dissipation.
This tutorial is located in the folder tutorials/channel.

5.8.1 Flow description

The flow is calculated in a plane channel with half-height 𝛿 = 1, streamwise (𝑥-coordinate) length 2𝜋
and span (𝑧-coordinate) width 𝜋 with periodic boundaries in the 𝑥- and 𝑧-directions as well as no-slip
walls at the top and the bottom of the domain. As initial conditions, an analytical mean turbulent velocity
profile a constant density of 𝜌 = 1 is used. We superimpose sinus perturbations in the 𝑢, 𝑣 and 𝑤 velocity
components which lead to rapid production of turbulent flow structures. Since the wall friction would
slow down the flow over time, a source term imposing a constant pressure gradient 𝑑𝑝

𝑑𝑥 = −1 is added as
a volume source. While the test case is incompressible in principle, we solve it here in a compressible
setting. The chosen Mach number with respect to the bulk velocity in the field is 𝑀𝑎 = 0.1, matching
the Moser channel test case [26]. In this setting, the wall friction velocity 𝜏 will always be equal to 1.

64 Chapter 5. Tutorials

https://www.paraview.org

FLEXI Documentation, Release 24.10

We can the define a Reynolds number based on the channel half-height and the wall friction velocity as
𝑅𝑒𝜏 = 1/𝜈.

5.8.2 Build Configuration

FLEXI should be compiled with the channel preset using the following commands.

cmake -B build --preset channel
cmake --build build

5.8.3 Mesh Generation

We use a Cartesian mesh with 4 cells per direction for the tutorial. The mesh is stretched in the
wall-normal direction to accommodate for the straining of the vortexes close to the wall. In case you
want to generate other meshes, the parameter file for HOPR is included in the tutorial directory as
parameter_hopr.ini. The default mesh uses 4 cells with a polynomial degree of 𝑁 = 5, correspond-
ing to a Large Eddy Simulation (LES) setup of 24 DOFs per direction.

5.8.4 Simulation Parameters

The simulation setup is defined in parameter_flexi.ini. In this tutorial, we are not interested in the
flow visualization of the instantaneous state files. Instead, we post-process consecutive, instantaneous
state files with the posti_channel_fft tool. As an output, we receive mean velocity and Reynolds
stress profiles as well as turbulent energy spectra at different locations normal to the channel wall.

Interpolation / Discretization Parameters

! == !
! SplitDG
! == !
SplitDG = PI ! SplitDG formulation to be used: SD, MO, DU, KG, PI

In this tutorial, we use the split-form DG method to guarantee non-linear stability of the turbulent chan-
nel flow simulation. As already specified in the CMake options, the FLEXI_SPLIT_DG option has to be
switched ON in combination with the FLEXI_NODETYPE=GAUSS-LOBATTO. FLEXI provides several dis-
tinct split-flux formulations. Therefore, a specific split flux formulation has to be chosen during runtime.
In this tutorial, the pre-defined split-flux formulation by Pirozzoli [14] is used, which results in a kinetic
energy preserving DG scheme.

5.8. Plane Turbulent Channel Flow 65

FLEXI Documentation, Release 24.10

Sub-Grid Scale Modeling

! == !
! LES MODEL
! == !
eddyViscType = 0 ! Choose LES model, 1:Smagorinsky
VanDriest = T ! Van Driest damping for LES viscosity
CS = 0.11 ! Smagorinsky constant
PrSGS = 0.6 ! turbulent Prandtl number

The eddyViscType defines the SGS model in use, with 0 corresponding to no model (implicit LES) and
1 the model by Smagorinsky [27]. The Smagorinsky constant CS is usually chosen around 0.11 for wall-
bounded turbulent flows and the turbulent Prandtl number is commonly set to 0.6. To ensure the correct
behavior of the eddy viscosity when approaching a wall, Van Driest-type damping has to be switched on.

5.8.5 Simulation and Results

We proceed by running the code with the following command.

flexi parameter_flexi.ini

If FLEXI was compiled with MPI support, it can also be run in parallel with the following command.
Here, <NUM_PROCS> is an integer denoting the number of processes to be used in parallel.

mpirun -np <NUM_PROCS> flexi parameter_flexi.ini

Important: FLEXI uses an element-based domain decomposition approach for parallelization. Con-
sequently, the minimum load per process is one grid element, i.e. do not use more processes than grid
elements!

Once the simulation has completed, the generated state files can be post-processed via the
posti_channel_fft tool which was build by the POSTI_CHANNEL_FFT CMake option. To run the
post-processing, the standard command is

posti_channel_fft parameter_channel_fft.ini <State1 State2 ...>

The parameter_channel_fft.ini is provided in the tutorial folder. The selection of the specific State
files to be used is left to the user. In this tutorial, we use all state files with a timestamp between 𝑡 = 10.0
and 𝑡 = 15.0. As an output you receive three files. One contains the mean velocity profiles as well as
the Reynolds stress profiles while the other two files contain turbulent energy spectra. To visualize those
files, you can run the python script plotChannelFFT.py, provided in the tools/testcases folder
with the following command in your simulation directory.

python tools/testcases/plotChannelFFT.py -p <PROJECTNAME> -t <POSTITIME>

Here, <PROJECTNAME> specifies the project name specified in the parameter_flexi.ini file and
<POSTITIME> is the timestamp of your output files from the posti_channel_fft tool.

66 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

Part I: Split-DG without Explicit LES Model

First, we run FLEXI without an SGS model. This configuration is called implicitly-modeled LES (iLES),
as no explicit sub-grid scale dissipation model is added. The resulting mean velocity and Reynolds stress
profiles as well as turbulent energy spectra close to the center of the channel are given in Fig. 5.24.

Fig. 5.24: Mean velocity and Reynolds stress profiles (left) as well as turbulent energy spectra close to
the center of the channel (right) of an implicit LES at 𝑅𝑒𝜏 = 180.

Part II: SplitDG with Explicit LES Model

In a second step, we run FLEXI with the SGS model by Smagorinsky and Van Driest damping. These
options need to be enabled in the parameter file as described above. The resulting mean velocity and
Reynolds stress profiles as well as turbulent energy spectra close to the center of the channel are given
in Fig. 5.25. In comparison to the previous simulation, you might recognize the effect of the explicit
damping on the Reynolds stress profile 𝑢′𝑢′, most evident close to the maximum. To further study the
influence of Smagorinsky’s model, play around with the spatial resolution both in terms of grid resolution
as well as the polynomial degree 𝑁 . You can also increase the Reynolds number to 𝑅𝑒𝜏 = 395 or
𝑅𝑒𝜏 = 590 and compare the results to DNS results from Moser et al. [26].

Fig. 5.25: Mean velocity and Reynolds stress profiles (left) as well as turbulent energy spectra close to the
centre of the channel (right) of a LES with Smagorinsky’s model and van Driest damping at 𝑅𝑒𝜏 = 180.

5.8. Plane Turbulent Channel Flow 67

FLEXI Documentation, Release 24.10

5.8.6 Performance Improvements

FLEXI comes with some advanced optimizations in order to increase its computational efficiency
for compute-intensive simulations. As these optimizations require user intervention, they are dis-
abled by default and appear once the CMake flag FLEXI_PERFORMANCE=ON is set. The first option
FLEXI_PERFORMANCE_OPTLIFT optimizes the computation of the parabolic terms of the applied equa-
tion system by omitting terms not relevant for the lifting procedure. However, POSTI is not available if
this option is enabled.

Link-Time Optimization

The option FLEXI_PERFORMANCE_PGO=ON enable link-time optimization (LTO), sometimes called
profile-guided optimization (PGO). For LTO/PGO, the executable is first instrumented with profiling
tools by the compiler and then executed on a relatively simple test case. The generated profiling data can
be used by the compiler to identify bottlenecks and hotspots in the code that cannot be identified from the
static source code analysis. Consequently, the executable is compiled a second time using the gathered
profiling data to perform these additional optimizations. In FLEXI, this two-step compilation works as
follows. First, FLEXI is compiled with the following options.

cmake -B build -DFLEXI_PERFORMANCE=ON -DFLEXI_PERFORMANCE_OPTLIFT=ON -DFLEXI_
→˓PERFORMANCE_PGO=ON -DCMAKE_BUILD_TYPE=Profile
cmake --build build

For this first step, FLEXI is compiled with CMAKE_BUILD_TYPE=Profile build type in order to activate
the profiling. Then, FLEXI has to be executed on a simple test case. Here, the freestream tutorial Section
5.2 provides a good starting step. Finally, FLEXI is compiled a second time, but this time with the build
type set to CMAKE_BUILD_TYPE=Release.

cmake -B build -DFLEXI_PERFORMANCE=ON -DFLEXI_PERFORMANCE_OPTLIFT=ON -DFLEXI_
→˓PERFORMANCE_PGO=ON -DCMAKE_BUILD_TYPE=Release
cmake --build build

This setting incorporates the generated profiling data into the compilation process. Now, FLEXI can
be executed as usual and should show a considerable performance improvement in comparison to the
previous simulations.

Important: Link-Time Optimization (LTO)/Profile-Guided Optimization (PGO) is currently only sup-
ported for the GNU compiler. Furthermore, this two-step compilation process has to be performed each
time either the code or the compile options, i.e. the FLEXI executable, are changed.

68 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

5.9 Flow Around a Cylinder

In this tutorial, the simulation around a two-dimensional circular cylinder at 𝑅𝑒𝐷 = 200 and 𝑀𝑎 = 0.2
is considered. The goal of this tutorial is to introduce the usage of temporal probes, here called “record
points”, together with the associated posti_visualizerecordpoints tool. Furthermore, we introduce the
posti_dmd tool and use it for dynamic mode decomposition (DMD). This tutorial is located in the folder
tutorials/cylinder.

5.9.1 Flow Description

The setup considered consists of a 2D rectangular domain with the primary flow in 𝑥-direction, from left
to right. Being a 2D plane, it corresponds to the “look-down” view upon the domain and the cylinder.
The imposed flow is sufficiently fast for the wake of the cylinder to turn from a laminar flow to a street
of shed vortices. It is the goal of the dynamic mode decomposition to analyze the primary oscillation
frequencies present in these shed vortices.

5.9.2 Build Configuration

FLEXI should be compiled with the cylinder preset using the following commands.

cmake -B build --preset cylinder
cmake --build build

5.9.3 Mesh Generation

We use a curved mesh with 1000 cells for the tutorial. The mesh is deformed to align with the cylinder
boundary in the center. Furthermore, we utilize stretching in wall-normal direction to increase the resolu-
tion in the crucial near-wall region and relax it towards the domain boundaries. In case you want to gener-
ate other meshes, the parameter file for HOPR is included in the tutorial directory as parameter_hopr.
ini.

5.9.4 Simulation Parameters

The simulation setup is defined in parameter_flexi.ini. The initial condition is selected via the vari-
able vector RefState=(/1.,1.0,0.,0.,17.857/) which represents the vector of primitive solution
variables (𝜌, 𝑢, 𝑣, 𝑤, 𝑝)𝑇 .

Material Properties

The material properties of the considered fluid are defined in the equation of state section. We chose the
Prandtl number 𝑃𝑟 and the isentropic coefficient 𝜅 to their default values of 𝑃𝑟 = 0.72 and 𝜅 = 1.4,
respectively. Thus, they are omitted in the parameter file.

! == !
! Equation of State
! == !

(continues on next page)

5.9. Flow Around a Cylinder 69

FLEXI Documentation, Release 24.10

(continued from previous page)

R = 17.857 ! ideal gas constant
Mu0 = 0.005 ! dynamic viscosity

Based on the ideal gas law, we get

𝑀𝑎 = 1/
√︀
𝜅𝑝/𝜌 = 0.2

Note that in this non-dimensional setup the mesh is scaled such that the reference length is unity, i.e.
𝐷 = 1. Then to arrive at 𝑅𝑒 = 𝜌𝑢𝐷/𝜇 = 200, the viscosity is set to

𝜇 = 𝜌𝑢𝐷/𝑅𝑒 = 1/𝑅𝑒 = 0.005

Boundary Conditions

The boundary conditions were already set in the mesh file by HOPR. Thus, the simulation runs without
specifying the boundary conditions in the FLEXI parameter file. The freestream boundaries of the mesh
are Dirichlet boundaries using the same state as the initialization, the wall is modeled as an adiabatic
wall. The boundary conditions in 𝑧 direction are not relevant for this 2D example, but would be realized
as periodic boundaries for a 3D simulation.

5.9.5 Simulation and Results

We proceed by running the code with the following command.

flexi parameter_flexi.ini

If FLEXI was compiled with MPI support, it can also be run in parallel with the following command.
Here, <NUM_PROCS> is an integer denoting the number of processes to be used in parallel.

mpirun -np <NUM_PROCS> flexi parameter_flexi.ini

The simulation runs for 300 convective time units to achieve periodic vortex shedding, thus - depending
on your machine - the simulation can take up to one to two hours.

Evaluation of the Strouhal Number

The Strouhal number (which is a non-dimensional frequency, 𝑆𝑟 = 𝑓 ·𝐷
𝑢 , describing the oscillatory

motion of the flow) is estimated using the forces acting on the cylinder induced by the vortex shedding.
The forces are calculated on the fly during runtime. The associated flags in the parameter file are the
following.

CalcBodyForces = T ! Calculate body forces (BC 4/9)
WriteBodyForces = T

The first line activates the calculation of the forces at each Analyze_dt, the second line enforces output
of the forces to a file. In Fig. 5.26 the force in y-direction is plotted. By measuring the time from peak to
peak over several periods the Strouhal number can be estimated to 0.1959 which is close to the expected
value from literature.

70 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

Fig. 5.26: Resulting forces on the airfoil up to 𝑡 = 10.

Evaluation of the Separation Angle

The mean separation angle is evaluated using the record point tool as described in tools-recordpoints.
The simulation setup already contains the record points set and output of the record points during the
simulation is enabled by the default parameter file. The record points set contains probes distributed
along a plane within the boundary layer of the upper cylinder side. For the calculation of the separation
angle, we want to use the Plane_doBLProps functionality within the posti_visualizerecordpoints tool.
In addition to the namesake visualization functionality, this tool has options to analyze the boundary layer
properties such as the wall friction to estimate the separation point. The required parameters are already
set in the parameter_visualizeRecordpoints.ini file. Thus, you can directly invoke the tool by
running the following command.

posti_visualizerecordpoints parameter_visualizeRecordpoints.ini Cylinder_
→˓Re200_RP_*

After executing the tool, you will get a file named Cylinder_RP_BLProps_upperSide_BLPla000001.
vtswhich can be visualized with ParaView. Since the data were are interested in is one-dimensional, you
won’t be able to see the data in the default render view. Instead, choose the Plot Over Line filter and
ParaView should automatically apply the correct plot range. As separation occurs when the skin friction
falls to zero, you can estimate the separation angle to 110∘ by plotting tau_w over the circumference and
finding the intersection with the 𝑦 = 0 axis.

5.9.6 Dynamic Mode Decomposition

The dynamic mode decomposition (DMD) is an algorithm to divide a temporal series into a set of modes
which are associated with a frequency and growth/decay rate. Thus, DMD allows us to determine tem-
poral dependencies such as the Strouhal frequency. The DMD in FLEXI is implemented according to
Schmid et al. [28] and available through the posti tool posti_dmd.

As the DMD operates in the frequency domain, we need a higher temporal resolution of the written state
files. Thus, change the time TEnd to 310 and nWriteData to 1. Then, restart the FLEXI simulation
from the latest state file with the following command.

5.9. Flow Around a Cylinder 71

FLEXI Documentation, Release 24.10

flexi parameter_flexi.ini Cylinder_Re200_State_0000300.000000000.h5

Once the simulation concludes, execute the DMD on the generated state files. The parameter_dmd.ini
is pre-configured to perform a DMD on the density, thus we can invoke the following command.

posti_dmd parameter_dmd.ini Cylinder_Re200_State_00003*

Attention: Dynamic Mode Decomposition (DMD) is performed in the frequency domain and re-
quires the complete solution to be loaded into memory. Depending on the available memory, you
might have to decrease the number of input state files.

During execution, two additional files Cylinder_Re200_DMD_0000300.000000000.h5 and
Cylinder_Re200_DMD_Spec_0000300.000000000.dat are generated. The first file contains a
field representation of the different modes, the second file contains the Ritz spectrum of the modes.
Thus, the field can be visualized in ParaView after conversion to VTK format with the following
command.

posti_visu parameter_postivisuDMD.ini Cylinder_Re200_DMD_0000300.000000000.h5

The new file Cylinder_Re200_Solution_0000300.000000000.vtu now contains four modes avail-
able for visualization. Fig. 5.27 shows the global, the first, the second, and the third harmonic mode. The
first mode is the mode of the considered Strouhal number.

Fig. 5.27: DMD modes of the density field. Top left global mode, top right first harmonic, bottom left
second harmonic, bottom right third harmonic.

The Ritz spectrum in DMD is a set of complex numbers that represent the eigenvalues of a low-rank
approximation of the Koopman operator. These eigenvalues provide information about the frequencies
and growth rates of the dominant modes present in the flow data. FLEXI contains a Python script tools/
plot_RitzSpectrum.py which we can execute on the DMD data file to obtain the Ritz spectrum.

python plot_RitzSpectrum.py -d Cylinder_Re200_DMD_Spec_0000300.000000000.dat

The result is a Ritz spectrum as shown in Fig. 5.28. Here, the abscissa shows the frequency of the modes
and the ordinate the growth/decay factor. Modes with 𝜔𝑟 < 0 are damped. The modes placed directly on

72 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

the abscissa are the already discussed modes, from left to right the global, the first, the second harmonic
mode and so on. The color and size of the modes represent the Euclidean norm of the mode which can
be interpreted as an energy norm of the mode.

Fig. 5.28: Ritz spectrum.

5.10 Flow Around a NACA0012 Airfoil

In this tutorial, the simulation around a NACA0012 airfoil at 𝑅𝑒 = 5000 and 𝑀𝑎 = 0.4 is considered.
First, we explain how to set the main flow parameters. Next, we describe the evaluation of lift and drag
and visualization of the flow field. Finally, we show how to use the sponge zone to remove artificial
reflections from the outflow boundary, so that a clean acoustic field is retained. The tutorial is located at
tutorials/naca0012.

5.10.1 Flow Description

A NACA0012 airfoil is placed in a semi-circular domain, extruded in the downstream direction. The
chord length is normalized to 1 with an inflow velocity of 1 at an angle of attack (AoA) of 8∘. The
viscosity and internal energy are scaled to obtain the desired Reynolds and Mach number, respectively.
Fig. 5.29 displays the Mach number distribution along the domain centerline in the vicinity of the airfoil.

5.10.2 Mesh Generation

The mesh file used by FLEXI is created from the external linear mesh NACA0012_652.cgns and a 3rd-
order boundary description NACA0012_652_splitNg2.cgns using HOPR. Obtain the executable and
run the following command which creates the mesh file NACA0012_652_Ng2_mesh.h5 in HDF5 format.

hopr parameter_hopr.ini

5.10. Flow Around a NACA0012 Airfoil 73

https://github.com/hopr-framework/hopr/releases

FLEXI Documentation, Release 24.10

Fig. 5.29: Mach number distribution around the NACA0012 airfoil.

5.10.3 Build Configuration

FLEXI should be compiled with the naca0012 preset using the following commands.

cmake -B build --preset naca0012
cmake --build build

5.10.4 Simulation Parameters

The simulation setup is defined in parameter_flexi.ini. The initial condition is selected via the
variable vector RefState which represents the vector of primitive solution variables (𝜌, 𝑢, 𝑣, 𝑤, 𝑝)𝑇 .

Material Properties

! == !
! Equation of State
! == !
RefState = (/1.,0.990268069,0.139173101,0.,4.4642857/)
IniExactFunc = 1 ! Exact function for initial solution
IniRefState = 1 ! Refstate used for initial solution
kappa = 1.4 ! Heat capacity ratio / isentropic exponent
R = 2.857142857 ! Specific gas constant
Pr = 0.720 ! Prandtl number
mu0 = 0.0002 ! Dynamic Viscosity

74 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

The chosen velocity vector (𝑢, 𝑣)𝑇 yields an angle of attack of 𝛼 = 8∘ and a velocity magnitude of 1.
The RefState are numbered in the order they are supplied in the parameter file. Material properties are
selected as described above. Based on the ideal gas law, we get

𝑀𝑎 = 1/
√︀
𝜅𝑝/𝜌 = 0.4.

Note that in this non-dimensional setup, the mesh is scaled such that the chord length is unity, i.e., 𝐶 = 1.
Then, to arrive at 𝑅𝑒 = 𝜌𝑢𝐶/𝜇 = 5000, the viscosity is set to

𝜇 = 𝜌𝑢𝐶/𝑅𝑒 = 1/𝑅𝑒 = 0.0002.

Numerical Setup

The DG method in FLEXI represents the solution on the mesh using piecewise polynomials. The poly-
nomial degree in this tutorial is chosen as 𝑁 = 3. The remaining numerical settings for the NACA0012
tutorial are summarized below.

N = 3 ! Polynomial degree
MeshFile = NACA0012_652_Ng2_mesh.h5
TEnd = 10 ! End time of the simulation
Analyze_dt = 0.01 ! Time interval for analysis
CFLscale = 0.9 ! Scaling for the theoretical CFL number
DFLscale = 0.9 ! Scaling for the theoretical DFL number

Boundary Conditions

Additionally, the setup requires the specification of the boundary conditions for all domain boundaries.

! == !
! BOUNDARY CONDITIONS
! == !
BoundaryName = BC_wall
BoundaryType = (/3,1/) ! Adiabatic wall condition
BoundaryName = BC_inflow
BoundaryType = (/2,0/) ! Weak Dirichlet condition
BoundaryName = BC_outflow
BoundaryType = (/2,0/) ! Weak Dirichlet condition
BoundaryName = BC_zminus
BoundaryType = (/1,0/) ! Periodicity condition
BoundaryName = BC_zplus
BoundaryType = (/1,0/) ! Periodicity condition

The freestream boundaries are set to weak Dirichlet conditions (BCType=2) using the same reference state
as the initialization. The airfoil boundaries are set to adiabatic walls (BCType=3). The boundary con-
ditions in 𝑧-direction are not relevant for this quasi-2D example and are realized as periodic boundaries
(BCType=1). All boundary conditions are summarized in the boundary conditions section.

5.10. Flow Around a NACA0012 Airfoil 75

FLEXI Documentation, Release 24.10

5.10.5 Simulation and Results

We proceed by running the code in parallel. Here, <NUM_PROCS> is an integer denoting the number of
processes to be used in parallel.

mpirun -np <NUM_PROCS> flexi parameter_flexi.ini

Lift and Drag Forces

The forces acting on the airfoil are one of the main desired output quantities from the simulation. They
are calculated on the fly during runtime.

CalcBodyForces = T ! Compute body forces at walls
WriteBodyForces = T ! Write body forces to file

CalcBodyForces activates the integration of the pressure and viscous forces
at each Analyze_dt. WriteBodyForces enforces output of the forces to a
<PROJECTNAME>_BodyForces_<BOUNDARYNAME>.csv. In addition to being relevant to the air-
foil performance, the body forces are a good measure for convergence. In the context of time-dependent
flows, this determines whether the solution has reached a quasi-steady state. Fig. 5.30 shows the 𝑥- and
𝑦-components of the force acting on the airfoil until 𝑇𝐸𝑛𝑑 = 10. The lift and drag coefficients can
be easily calculated by rotating these forces from the computational reference frame to the one of the
freestream.

Fig. 5.30: Resulting forces on the NACA0012 airfoil.

From the forces, it is clear that the steady state has not yet been reached and the simulation must be run
further. Before we proceed with the simulation, we will nonetheless examine the preliminary results to
check the quality of the simulation.

76 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

Wall Velocities

Due to the weak coupling between the grid cells and to boundaries, boundary conditions are enforced
weakly, e.g. by applying a specific flux. This adds largely to the stability of the scheme. However, as
a result the no-slip condition at the wall is not exactly fulfilled by the numerical solution. Rather, it
is approximated as far as the resolution allows. Evaluation of the velocity vector near the wall helps
quantifying this error, which can be seen as a quality measure for the near wall resolution.

CalcWallVelocity = T ! Compute velocities at wall boundaries
WriteBodyForces = T ! Write wall velocities to file

CalcWallVelocity activates the integration of the wall velocities at each
Analyze_dt. WriteWallVelocity enforces output of the wall velocities to a
<PROJECTNAME>_WallVel_<BOUNDARYNAME>.csv.

During the computation, we get output like the following.

Wall Velocities (mean/min/max) :
BC_wall 2.661973831E-02 2.303391807E-04 6.206912250E-01

In our case, the wall velocity is on average at about 3% of the freestream velocity, reaching a peak of 60%.
This peak typically occurs at the quasi-singularity at the trailing edge. To decrease this deviation from
the theoretical no-slip condition, either the wall-normal mesh size must be decreased or the polynomial
degree increased. It is important to note that both of these measures will, besides increasing the number
of degrees of freedom, decrease the time step, which directly affects the computational time. Thus, it is
important to achieve an acceptable trade-off between the acceptable error and the computational time. In
this tutorial, the observed slip velocity is deemed uncritical and we proceed with the same resolution.

Visualization

FLEXI relies on ParaView for its visualization. To visualize the FLEXI solution, it must be converted
from the HDF5 format into a format suitable for Paraview. FLEXI provides a post-processing tool
posti_visu which generates files in VTK format when running the following command.

mpirun -np 4 posti_visu parameter_postiVisu.ini parameter_flexi.ini NACA0012_
→˓Re5000_AoA8_State_0000000.0*

Fig. 5.31 shows a visualization of the density distribution at 𝑡 = 10. The large scale vortex shedding of
the wake due to the high angle of attack is clearly visible. Acoustic radiation from the airfoil can also be
observed. Now, a problem becomes apparent: the vortex street propagating towards the outflow boundary
results in a second, artificial acoustic source at the outflow boundary. This is one of the fundamental
problems in direct aeroacoustic computations. Before we proceed with the simulation, we will now
make use of the sponge zone functionality of FLEXI to remove this artificial source.

5.10. Flow Around a NACA0012 Airfoil 77

https://www.paraview.org

FLEXI Documentation, Release 24.10

Fig. 5.31: Density field around the NACA0012 airfoil.

Sponge Zone

The sponge zone introduces a dissipative source term to the discrete operator, which is only active in a
user-specified region, typically upstream of the outflow boundary. We use the sponge zone to dampen
the vortices convected downstream before they hit the outflow boundary. The associated flags in the
parameter file are given in SPONGE section of the parameter_flexi.ini file. See [8] for the background
of our sponge zone implementation.

! == !
! SPONGE
! == !
SpongeLayer = T ! Enables the dissipative source term
SpongeShape = 1 ! Shape of sponge: 1: Cartesian
damping = 1.0 ! Damping factor of sponge
xStart = (/2.0,0,0/) ! Coordinates of start position of sponge

! - ramp (for SpongeShape=1)
SpongeDistance = 3.0 ! Length of the sponge ramp

! - ramp (for SpongeShape=1)
SpongeDir = (/1,0,0/) ! Direction vector of the sponge ramp

! - ramp (for SpongeShape=1)
SpongeBaseFlow = 4 ! Type of baseflow to be used for sponge

! - 4: moving average (Pruett baseflow)
tempFilterWidthSponge = 2.0 ! Temporal filter width used to advance

! Pruett baseflow in time
SpongeViz = T ! Write a visualization file of the␣
→˓sponge strength

78 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

The source term is of the form

𝑈̃𝑡 = 𝑈𝑡 − 𝑑𝜎(𝑥⃗) (𝑈 − 𝑈𝐵) . (5.3)

First, damping determines the strength of the source term, i.e., 𝑑 in eq. (5.3). It is dependent on the
mean convection velocity, the desired amount of amplitude reduction and, the thickness of the sponge
zone. Typically, some trial and error is necessary to obtain an appropriate value. In non-dimensional
calculations, i.e., velocity and length scale are of 𝒪(1), 𝑑 = 0.1 . . . 2.

Ramping of the source term from 0 is necessary to avoid reflections at the sponge interface. If such
reflections occur, it is necessary to choose a wider sponge ramp, so that the source term is ramped up more
gradually. We choose a parallel ramp by setting SpongeShape=1. The ramp’s start position, thickness,
and direction are controlled by the parameters xStart, SpongeDistance and SpongeDir, respectively.
These parameters govern the shape function 𝜎(𝑥⃗) which smoothly ramps the source term from 0 to 1.
With the chosen settings, the sponge zone starts one chord behind the airfoil and is ramped up to 1 at the
outflow boundary, located 4 chords behind the airfoil. In order to visualize the ramping function 𝑑𝜎(𝑥⃗),
set SpongeViz=T.

Caution: The sponge zone is not a physical region but a boundary condition. Place the active source
regions far enough downstream of the airfoil to ensure they do not influence the near-field solution.

Next, select the desired base flow, (𝑈𝐵). For the current configuration, the moving average
(SpongeBaseFlow=4) is appropriate. It produces a mean field slowly progressing in time, which adapts
to the airfoil’s surrounding flow. The parameter tempFilterWidthSponge determines the effective
time window for this average and should be set slightly longer than the largest time scales to be damped.
In this example, we use tempFilterWidthSponge=2.0, chosen based on the frequency of oscillations
in the body forces, as shown in Fig. 5.30.

The moving average base flow requires an initial field. One option is to provide an initial flow field from
a file using the SpongeRefFile parameter. If this parameter is not set, If this parameter is not set, the
code initializes the base flow with the current solution field. Therefore:

• For a new simulation, the base flow is initialized with IniExactFunc, which also initializes the
solution.

• For a restarted simulation, as in this example, the base flow is initialized using the state file provided
for the restart.

Important: When using the moving average base flow, the code creates *baseflow*.h5 files for restarting
with the saved base flow state. If these files match the current project name, they are automatically loaded.
However, if SpongeRefFile is also specified, the base flow restarts from that file instead, which may
unintentionally reset the flow state.

5.10. Flow Around a NACA0012 Airfoil 79

FLEXI Documentation, Release 24.10

5.10.6 Restarting the Simulation

If the simulation is interrupted or needs to extend beyond TEnd=10, FLEXI can be restarted easily. With
the current settings, the solution is saved every 0.1 time units, so to continue the simulation, update
TEnd=25 in the parameter file. Since we have now turned on the sponge zone, it is also advisable to
modify the project name, i.e.

ProjectName = NACA0012_Re5000_AoA8_SP

To restart the simulation, ensure the state files are in the current folder, then run

mpirun -np 4 flexi parameter_flexi.ini NACA0012_Re5000_AoA8_State_0000010.
→˓000000000.h5

You can also adjust the polynomial degree N during restart, allowing a lower initial degree for faster
convergence, then a higher degree for improved accuracy. The code will automatically project the solution
onto the new polynomial basis at startup, but restart is only possible with the same mesh file.

5.10.7 Two-dimensional Computation

The laminar flow around this airfoil is inherently two-dimensional. However, so for this simulation was
run using a three-dimensional code by imposing periodic boundary conditions with only one mesh ele-
ment in the spanwise direction. This means we

• Compute one unnecessary variable (momentum in spanwise direction),

• Compute three-dimensional fluxes for all variables,

• Compute one unnecessary gradient,

• Use several degrees of freedom in the spanwise direction due to the high order ansatz in each
element.

To avoid these inefficiencies, FLEXI provides an option for true two-dimensional calculations. Set the
flag FLEXI_2D=ON during configuration, which enables two-dimensional mode. Navigate to your build
directory, set the FLEXI_2D flag in CMake, reconfigure, and recompile. You must also use a mesh with
only one element in the third dimension. Since the tutorial mesh meets this requirement, you can start
two-dimensional calculations immediately after recompiling with FLEXI_2D enabled.

Once compiled, you can rerun the code with the same parameter file using the new executable. All
settings for two-dimensional and three-dimensional computations remain the same. For compatibility,
vector parameters (like momentum in RefState) should still specify three dimensions; however, the
third dimension will simply be ignored. Pay attention to how much faster your code runs when using the
two-dimensional version.

By default, FLEXI saves State files in a three-dimensional format by extruding the solution, ensuring
compatibility with existing post-processing tools. To save space, you can set Output2D=T to write two-
dimensional files. Note that, regardless of dimensionality, arrays retain three dimensions (with one di-
mension of size 1 for two-dimensional simulations), and all variables, including the spanwise momentum,
are still present but set to zero without performing calculations.

80 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

5.10.8 Record Points (Probes)

To track the evolution of flow variables near the airfoil’s upper and lower surfaces, recording the entire
flow field in State files can be costly, especially for high temporal resolution or large fields. FLEXI
offers record points (commonly also known as probes) to sample specific flow locations at high temporal
resolutions (even down to a single time step) to reduce storage costs.

Setting up record points involves three steps

• Creating the record points

• Running a simulation with active record points

• Visualizing the results

The first and third steps are performed with pre- and post-processing tools, respectively. Enabling record
points in a simulation just requires setting the respective options in FLEXI.

Record Points Preparation

The coordinates of the record points are defined using the POSTI tool preparerecordpoints, which is
built when the corresponding CMake option is enabled. The tool takes a single parameter file as an
input, so run it as follows:

posti_preparerecordpoints parameter_recordpoints.ini

A sample parameter file is included in the NACA0012 tutorial folder. Define the mesh and project name
in this file. The options NSuper and maxTolerance adjust the record point search algorithm; setting
NSuper to at least twice the mesh’s polynomial degree is a good starting point. The remainder of the
parameter file is the actual definition of the record points.

Record points are organized in sets, with each set a part of a named group. In the example, two sets are
created - one for the suction and one for the pressure side of the airfoil -, each assigned to a separate
group. FLEXI supports several differing set types, such as single points, lines, or planes. For the NACA
example, we use the boundary layer plane set type. This set defines a special type of plane by projecting
a spline onto the nearest boundary and distributing a user-specified number of points along this line. The
plane is then created through extrusion along the boundary’s normal vector over a specified distance,
with optional stretching to cluster points near the wall. The definition of one of the groups looks like
this:

GroupName = suctionSide
BLPlane_GroupID = 1
BLPlane_nRP = (/20,30/)
BLPlane_nCP = 2
BLPlane_CP = (/0.9,0.014,0.5/)
BLPlane_height = 0.05
BLPlane_CP = (/0.999,0.001,0.5/)
BLPlane_height = 0.05
BLPlane_fac = 1.04

Each set of record points must be assigned to a group for identification purposes. The assignment is
specified with the GroupID (e.g., BLPlane_GroupID), here set to 1 for assignment to the first group.
After defining the group, configure the parameters of the set. For a boundary layer plane, set the number
of points along wall-tangential and wall-normal directions using BLPlane_nRP. Then, specify the spline

5.10. Flow Around a NACA0012 Airfoil 81

FLEXI Documentation, Release 24.10

projected onto the boundary. Set the number of control points in the boundary (BLPlane_nCP), the
coordinates of each control point (BLPlane_CP), the height in the wall-normal direction at this point
(BLPlane_height) and the stretching factor applied in the wall-normal direction (BLPlane_fac). For
details on defining other set types, refer to their respective parameter descriptions.

When you run the preparerecordpoints tool, it computes the physical coordinates of the record points
based on your definitions. The tool then identifies the mesh elements containing each record point and
calculates the coordinates in the reference element using Newton’s method for interpolation. The results
are saved in a file named <PROJECTNAME>_RPSet.h5. If you enable the doVisuRP option, a visualization
of the record points is generated for viewing in ParaView.

Record Points Usage

To utilize record points during a simulation, simply set a few options in the FLEXI parameter file. The
essential options are given in the following.

RP_inUse = T
RP_DefFile = NACA0012_RPSet.h5
RP_SamplingOffset = 1

With the RP_inUse option, the record points system is enabled or disabled. The RP_DefFile op-
tion specifies the name of the file created by the preparerecordpoints tool containing the record
points definitions (e.g., NACA0012_RPSet.h5). The RP_SamplingOffset option determines the sam-
pling interval for the solution, allowing you to specify that the solution should be sampled at every
RP_SamplingOffset timestep.

When you run the simulation, in addition to the State files, corresponding RP files are generated, con-
taining the conservative variable values at each record point for every sampling timestep.

Record Points Post-Processing

Record points data is post-processed using the visualizerecordpoints tool. It can merge multiple
RPSet.h5 files to create an extended time series. In addition to visualizing the time series, a multitude
of post-processing options is available. These options allow you to compute the mean and fluctuating
components of the solution or perform spectral analysis using FFTs. For boundary layer planes, different
turbulent quantities, such as skin friction, can be computed directly.

For example, we want to calculate the mean flow 𝑈̄ and the temporal fluctuations 𝑈) at our two record
point planes. A sample parameter file for the tool is provided in the tutorial folder. The options set in the
parameter file are

ProjectName = NACA0012
RP_DefFile = NACA0012_RPSet.h5
GroupName = suctionSide
GroupName = pressureSide
OutputTimeAverage = T
doFluctuations = T

In this configuration, we specify a name for the project (ProjectName) and provide the path to the file
containing the record point definitions (RP_DefFile). The GroupName options correspond to the names
we defined while using the preparerecordpoints tool. To evaluate the data, we calculate the temporal

82 Chapter 5. Tutorials

FLEXI Documentation, Release 24.10

average and the fluctuations, which are determined using the equation

𝑈 ′ = 𝑈 − 𝑈̄ .

We did not specify any specific variables for visualization, meaning all conservative variables stored in
the RPSet.h5 files will be utilized. If you wish to visualize a specific or derived variable (e.g., pressure),
you can simply set it in the parameter file as follows

VarName = Pressure

You can execute the tool using the command

posti_visualizerecordpoints parameter_visualizeRecordpoints.ini NACA0012_
→˓Re5000_AoA8_RP_*

This takes all the time samples recorded during the simulation as input. For each of the planes, a separate
.vts file containing the temporal average is generated. The fluctuations are time-resolved data, and due to
limitations in the VTK file format, each time step must be written to a single file. To prevent the creation
of numerous files in the working directory, these files can be organized into a subfolder named timeseries.
In this case, .pvd files for the fluctuations are created in the working directory. These files can be opened
with ParaView, containing the complete time series along with the correct time values. If you to not
require ParaView compatibility, the complete solution can be written in a single HDF5 file by setting

OutputFormat = HDF5

5.10. Flow Around a NACA0012 Airfoil 83

FLEXI Documentation, Release 24.10

84 Chapter 5. Tutorials

CHAPTER

SIX

TOOLS OVERVIEW

This section gives an overview over the additional tools contained in the FLEXI repository. It also
provides references to the tutorials where they are used as reference.

6.1 POSTI Tools

The different POSTI tools are used to further post-process the simulation results obtained with FLEXI.
They can be compiled together with FLEXI given the according cmake option. A list and description
for the input parameters of the associated POSTI tools can be displayed with the command

[posti_toolname] --help

6.1.1 POSTI_VISU

POSTI_VISU converts FLEXI StateFiles, TimeAverage and BaseFlow files from the HDF5 format to the
ParaView readable .vtu (single) or .pvtu (parallel) format.

The POSTI_VISU tool reads a separate parameter file as optional first argument, while the files to be visu-
alized are passed as the last argument. Without specifying a separate parameter file, the parameters stored
in the userblock of the files are used and only the conservative variables are visualized. The latter can
be a single file or several files, specified either as simple space-separated list like Testcase_State_0.
h5 Testcase_State_1.h5 or via standard wildcarding like Testcase_State_*.h5. The file must
contain the entire volume solution, i.e. can be a StateFile or a TimeAverage file, for example.

For serial execution, the POSTI_VISU tool is invoked by entering

posti_visu [parameter_postiVisu.ini [parameter_flexi.ini]] <statefiles>

The tool also runs in parallel by prepending mpirun -np <no. processors> to the above command,
as usual, provided the compiler option LIBS_USE_MPI is enabled.

mpirun -np <no. processors> posti_visu [parameter_postiVisu.ini [parameter_
→˓flexi.ini]] <statefiles>

Important: When post-processing with activated LIBS_USE_MPI flag, especially with large cases and
large files as is often the case with TimeAverage files, the file size of approximately 2𝐺𝐵 per core must
not be exceeded. In this case, the number of cores used must be increased for MPI-parallel executable

85

FLEXI Documentation, Release 24.10

POSTI tools, or POSTI must be compiled with LIBS_USE_MPI=OFF. ParaView can only read state files
up to 2𝐺𝐵 in single mode (.vtu).

The POSTI_VISU tool has a help function that describes the available parameters. This help can be
invoked by running the tool with the flag --help

posti_visu --help

The most important runtime parameters to be set in parameter_postiVisu.ini are listed in the table
below.

Table 6.1: POSTI_VISU parameters.

Parameter Possible Values Description
NodeTypeVisu VISU / GAUSS / GAUSS-

LOBATTO / VISU-INNER
Node type of visualization basis; the default VISU
uses equidistant nodes which include the bound-
ary points of the elements.

NVisu 1 / 2 / 3 / . . . Polynomial degree used to sample the solution for
visualization; if left unspecified, it defaults to us-
ing the number of collocation points per elements,
i.e. 𝑁 + 1 per dimension. For high-quality visu-
alization, it is usually advisable to choose a value
higher than 𝑁 in order to keep interpolation er-
rors small.

VarName Density / VelocityX / . . . Names of the variables to be visualized, param-
eter can be specified multiple times to visualize
more than one variable and set to both conserva-
tives (e.g. Density) and primitives (e.g. Veloci-
tyX). If left unspecified, it defaults to visualizing
the five conservative variables.

BoundaryName Density / WallFriction / y+ /
. . .

Name of the boundary to visualize. Some vari-
ables can only be visualized on the boundary like
WallFriction / y+.

In the following all available variables that can be used for visualization are listed.

Density, MomentumX, MomentumY, MomentumZ, EnergyStagnationDensity, VelocityX,␣
→˓VelocityY, VelocityZ, Pressure, Temperature, VelocityMagnitude,␣
→˓VelocitySound, Mach, EnergyStagnation ,EnthalpyStagnation ,Entropy ,
→˓TotalTemperature ,TotalPressure ,PressureTimeDeriv ,VorticityX ,
→˓VorticityY ,VorticityZ ,VorticityMagnitude ,NormalizedHelicity ,Lambda2␣
→˓ ,Dilatation ,QCriterion ,Schlieren ,WallFrictionX ,WallFrictionY ,
→˓WallFrictionZ ,WallFrictionMagnitude ,WallHeatTransfer ,x+ ,y+ z+

The practical application of POSTI_VISU can be practiced in the following tutorials. Linear Scalar
Advection-Diffusion Equation, Freestream, Lid-driven Cavity, SOD Shock Tube, Double Mach Reflection,
Flow Around a Cylinder, Flow Around a NACA0012 Airfoil

86 Chapter 6. Tools Overview

FLEXI Documentation, Release 24.10

6.1.2 POSTI_SWAPMESH

The POSTI_SWAPMESH tool interpolates the solution of a StateFile or a TimeAverage file from one mesh
to another, or from one polynomial degree to another. To do so, the parametric coordinates of the interpo-
lation points of the new state are searched in the old mesh. For non-equal elements a Newton algorithm is
used to find the parametric coordinates of the interpolation points. Based on the found parametric coordi-
nates high-order interpolation to the interpolation points in the new mesh is performed. Non-conforming
meshes are allowed. A reference state can be given for areas in the target mesh which are not covered by
the original mesh. The project name and therefore the file name is based on the original project name
with ‘_newMesh’ appended, the original file is therefore not overwritten.

For serial execution, the POSTI_SWAPMESH tool is invoked by entering

posti_swapmesh parameter_postiSwapmesh.ini <statefiles>

The tool also runs in parallel using OpenMP. To run in parallel the environment Variable
OMP_NUM_THREADS=XXX need to be set with the number of threads to be used, provided the compiler
option LIBS_USE_OPENMP is enabled. In this case the parallel execution is the same as the single execu-
tion.

A list of parameters used by the POSTI_SWAPMESH tool is listed in the table below. An example of the
POSTI_SWAPMESH tool can be found in

./flexi/ini/swapmesh

6.1. POSTI Tools 87

FLEXI Documentation, Release 24.10

Table 6.2: POSTI_SWAPMESH parameters.

Parameter Possible Values Description
MeshFileOld none / MeshFile-

Name.h5
Old mesh file (if different than the one found in
the state file)

MeshFileNew MeshFileName.h5 New mesh file
useCurvedsOld T/F Controls usage of high-order information in old

mesh. Turn off to discard
useCurvedsNew T/F Controls usage of high-order information in new

mesh. Turn off to discard
NInter 1 / 2 / 3 / . . . Polynomial degree used for interpolation on new

mesh (should be equal or higher than NNew) - the
state will be interpolated to this degree and then
projected down to NNew

NNew 1 / 2 / 3 / . . . Polynomial degree used in new state files
NSuper 1 / 2 / 3 / . . . Polynomial degree used for supersampling on the

old mesh, used to get an initial guess for Newton’s
method - should be higher than NGeo of old mesh

maxTolerance value ≥ 0 Tolerance used to mark points as invalid if outside
of reference element more than maxTolerance

printTroublemakers T/F Turn output of not-found points on or off
RefState complete conservative

state vector
If a RefState is defined, this state will be used at
points that are marked as invalid - without a Ref-
State, the program will abort in this case

abortTolerance value ≥ 0 Tolerance used to decide if the program should
abort if no RefState is given

ExtrudeTo3D T/F Perform an extrusion of a one-layer mesh to the
3D version Layer which is used in extrusion

ExtrudePeriodic T/F Perform a periodic extrusion of a 3D mesh to a
mesh with extended z length

88 Chapter 6. Tools Overview

CHAPTER

SEVEN

PARAMETER FILE

A parameter.ini file is needed to control the code. An overview of all options in the parameter file
can be generated by following command in the terminal:

flexi --help

Generally following types are used:

INTEGER = 1
REAL = 1.23456
LOGICAL = T ! True
LOGICAL = F ! False
STRING = FLEXI
VECTOR = (/1.0,2.0,3.0/)

The concept of the parameter file is described as followed:

• each single line is saved and examined for specific variable names

• the examination is case-insensitive

• comments can be set with symbol “!” in front of the text

! commented text

• the order of defined variables is with one exception generally indifferent, but it is preferable to
group similar variables

• the order is only necessary for combined parameters for a setting, e.g., when changing boundary
conditions or using multiple sponge zones. For example, if you want to change a specific boundary
by addressing its name, the associated boundary type must be defined in the correct order:

BoundaryName=inflow ! BC_Name defined in mesh file
BoundaryType=(/2,0,0,0/)
BoundaryName=outflow ! BC_Name defined in mesh file
BoundaryType=(/2,0,0,0/)

The following tables describe the main configuration options which can used in the parameter file:

89

FLEXI Documentation, Release 24.10

MPI De-
fault

Description

GroupSize 0 Define size of MPI subgroups, used to e.g. perform grouped IO, where
group master collects and outputs data.

IO_HDF5 Default Description
gatheredWrite F Set true to activate gathered HDF5 IO for parallel computations.

Only local group masters will write data after gathering from local
slaves.

Interpolation Default Description
N Polynomial degree of computation to represent to solution

Restart Default Description
ResetTime F Override solution time to t=0 on restart.
FlushInitialState F Check whether (during restart) the statefile from which the restart

is performed should be deleted.

Output Default Description
NVisu Polynomial degree at which solution is sampled for visualization.
NOut -1 Polynomial degree at which solution is written. -1: NOut=N, >0:

NOut
ProjectName Name of the current simulation (mandatory).
Logging F Write log files containing debug output.
ErrorFiles T Write error files containing error output.
OutputFormat None File format for visualization: None, ParaView.
ASCIIOutputFor-
mat

CSV File format for ASCII files, e.g. body forces: CSV

doPrintSta-
tusLine

F Print: percentage of time, . . .

WriteStateFiles T Write HDF5 state files. Disable this only for debugging issues.
NO SOLUTION WILL BE WRITTEN!

WriteTimeAvg-
Files

T Write HDF5 time average files. Disable this only for debugging.
NO TIME AVERAGE FILES WILL BE WRITTEN!

90 Chapter 7. Parameter File

FLEXI Documentation, Release 24.10

Mesh Default Description
MeshFile (relative) path to meshfile (mandatory).
useCurveds T Controls usage of high-order information in mesh. Turn off to

discard high-order data and treat curved meshes as linear meshes.
interpolate-
FromTree

T For non-conforming meshes, built by refinement from a tree
structure, the metrics can be built from the tree geometry if it
is contained in the mesh. Can improve free-stream preservation.

meshScale 1.0 Scale the mesh by this factor (shrink/enlarge).
meshdeform F Apply simple sine-shaped deformation on Cartesian mesh (for

testing).
crossProductMet-
rics

F Compute mesh metrics using cross product form. Caution: in this
case free-stream preservation is only guaranteed for N=3*NGeo.

debugmesh 0 Output file with visualization and debug information for the mesh.
0: no, visualization, 3: Paraview binary

BoundaryName Names of boundary conditions to be set (must be present in the
mesh!).For each BoundaryName a BoundaryType needs to be
specified.

BoundaryType Type of boundary conditions to be set. Format:
(BC_TYPE,BC_STATE)

writePartitionInfo F Write information about MPI partitions into a file.
NGeoOverride -1 Override switch for NGeo. Interpolate mesh to different

NGeo.<1: off, >0: Interpolate

Equation of
State

Default Description

UseNonDimen-
sionalEqn

F Set true to compute R and mu from bulk Mach Reynolds (nondi-
mensional form).

BulkMach Bulk Mach (UseNonDimensionEqn=T)
BulkReynolds Bulk Reynolds (UseNonDimensionEqn=T)
kappa 1.4 Heat capacity ratio / isentropic exponent
R 287.058 Specific gas constant
Pr 0.72 Prandtl number
mu0 0.0 Dynamic Viscosity
Ts 110.4 Sutherland’s law for variable viscosity: Ts
Tref 273.15 Sutherland’s law for variable viscosity: Tref
ExpoSuth 1.5 Sutherland’s law for variable viscosity: Exponent

Equation Default Description
IniRefState Refstate required for initialization.
RefState State(s) in primitive variables (density, velx, vely, velz, pressure).
BCStateFile File containing the reference solution on the boundary to be used

as BC.

91

FLEXI Documentation, Release 24.10

Riemann Default Description
Riemann RoeEntropy-

Fix
Riemann solver to be used: LF, HLLC, Roe, RoeEntropyFix,
HLL, HLLE, HLLEM

RiemannBC Same Riemann solver used for boundary conditions: Same, LF, Roe,
RoeEntropyFix, HLL, HLLE, HLLEM

Exactfunc Default Description
IniExactFunc Exact function to be used for computing initial solution.
AdvVel Advection velocity (v1,v2,v3) required for exactfunction

CASE(2,21,4,8)
IniAmplitude Amplitude for synthetic test case
IniFrequency Frequency for synthetic test case
MachShock 1.5 Parameter required for CASE(10)
PreShockDens 1.0 Parameter required for CASE(10)
IniCenter Shu Vortex CASE(7) (x,y,z)
IniAxis Shu Vortex CASE(7) (x,y,z)
IniHalfwidth 0.2 Shu Vortex CASE(7)
JetRadius 1.0 Roundjet CASE(5,51,33)
JetEnd 10.0 Roundjet CASE(5,51,33)
JetAmplitude 1.0 Roundjet CASE(5,51,33)
Ramping 1.0 Subsonic mass inflow CASE(28)
P_Parameter 0.0 Couette-Poiseuille flow CASE(8)
U_Parameter 0.01 Couette-Poiseuille flow CASE(8)
AmplitudeFactor 0.1 Harmonic Gauss Pulse CASE(14)
HarmonicFre-
quency

400.0 Harmonic Gauss Pulse CASE(14)

SigmaSqr 0.1 Harmonic Gauss Pulse CASE(14)
delta99_in Blasius boundary layer CASE(1338)
x_in Blasius boundary layer CASE(1338)

Filter Default Description
FilterType None Type of filter to be applied. None, CutOff, Modal, LAF
NFilter Cut-off mode (FilterType==CutOff or LAF)
LAF_alpha 1.0 Relaxation factor for LAF, see Flad et al. JCP 2016
HestFilterParam Parameters for Hesthaven filter (FilterType==Modal)

Overintegration Default Description
Overintegra-
tionType

none Type of overintegration. None, CutOff, ConsCutOff

NUnder Polynomial degree to which solution is filtered (Overintegra-
tionType == 1 or 2

92 Chapter 7. Parameter File

FLEXI Documentation, Release 24.10

Lifting Default Description
doWeakLifting F Set true to perform lifting in weak form.
doConserva-
tiveLifting

F Set true to compute the volume contribution to the gradients in
conservative form, i.e. deriving the solution multiplied by the
metric terms instead of deriving the solution and multiplying by
the metrics.

BaseFlow Default Description
doBaseFlow F Switch on to calculate a baseflow.
BaseFlowFile none FLEXI file (e.g. baseflow, TimeAvg) from which baseflow is

read.
BaseFlowRefS-
tate

Specify which refstate should be used in no baseflowfile is given.

SelectiveFilter (/ -999,
-999, -999 /)

Filter Mean to another polynomial degree.

TimeFilterWidth-
BaseFlow

1.0 Temporal filter width of exponential, explicit time filter.

93

FLEXI Documentation, Release 24.10

Sponge Default Description
SpongeLayer F Turn on to use sponge regions for reducing reflections at bound-

aries.
damping Damping factor of sponge. U_t=U_t-damping*(U-U_base) in

fully damped regions.
SpongeShape Set shape of sponge: (1) ramp : Cartesian / vector-aligned, (2)

cylindrical
nSpongeVertices Define number of vertices per Polygon sponge Zone defining the

Polygon
SpongeVertex Sponge Vertex that defines polygon
SpongeDistance Length of sponge ramp. The sponge will have maximum strength

at the end of the ramp and after that point.
SpongeXStart Coordinates of start position of sponge ramp (Sponge-

Shape=ramp) or center (SpongeShape=cylindrical).
SpongeXEnd Coordinates of second point to define Cartesian aligned cube.
SpongeDir Direction vector of the sponge ramp (SpongeShape=ramp)
SpongeRadius Radius of the sponge zone (SpongeShape=cylindrical)
SpongeAxis Axis vector of cylindrical sponge (SpongeShape=cylindrical)
SpongeViz F Turn on to write a visualization file of sponge region and strength.
WriteSponge F Turn on to write the sponge region and strength to the first state

file.
SpongeBaseFlow 1 Type of baseflow to be used for sponge. (1) constant: fixed

state,(2), exactfunction: exact function, (3) file: read baseflow
file, (4) pruett: temporally varying, solution adaptive Pruett base-
flow

SpongeRefState Index of refstate in ini-file (SpongeBaseFlow=constant)
SpongeExact-
Func

Index of exactfunction (SpongeBaseFlow=exactfunction)

SpongeRefFile FLEXI solution (e.g. TimeAvg) file from which sponge is read.
tempFilterWidth-
Sponge

Temporal filter width used to advance Pruett baseflow in time.

94 Chapter 7. Parameter File

FLEXI Documentation, Release 24.10

TimeDisc Default Description
TimeDiscMethod CarpenterRK4-

5
Specifies the type of time-discretization to be used, e.g.
the name of a specific Runge-Kutta scheme. Possible
values: standardrk3-3, carpenterrk4-5, niegemannrk4-14,
toulorgerk4-8c, toulorgerk3-7c, toulorgerk4-8f, ketchesonrk4-
20, ketchesonrk4-18, eulerimplicit, cranknicolson2-2, esdirk2-3,
esdirk3-4, esdirk4-6

TEnd End time of the simulation (mandatory).
TStart 0.0 Start time of the simulation (optional, conflicts with restart).
CFLScale Scaling factor for the theoretical CFL number, typical range

0.1..1.0 (mandatory)
DFLScale Scaling factor for the theoretical DFL number, typical range

0.1..1.0 (mandatory)
dtmin -1.0 Minimal allowed timestep (optional)
dtkill -1.0 Kill FLEXI if dt gets below this value (optional)
maxIter -1 Stop simulation when specified number of timesteps has been per-

formed.
NCalcTimeStep-
Max

1 Compute dt at least after every Nth timestep.

Implicit Default Description
adaptepsNewton F Adaptive Newton eps by Runge-Kutta error estimation
EpsNewton 1.0E-03 Newton tolerance, only used if adaptepsNewton=F
nNewtonIter 50 Maximum amount of Newton iterations
EisenstatWalker F Adaptive abort criterion for GMRES
gammaEW 0.9 Parameter for Eisenstat Walker adaptation
EpsGMRES 1.0E-03 GMRES Tolerance, only used of EisenstatWalker=F
nRestarts 10 Maximum number of GMRES Restarts
nKDim 30 Maximum number of Krylov subspaces for GMRES, after that a

restart is performed
Eps_Method 2 Method of determining the step size of FD approximation of A*v

in GMRES, 1: sqrt(machineAccuracy)*scaleps, 2: take norm of
solution into account

scaleps 1.0 Scaling factor for step size in FD, mainly used in Eps_Method=1
FD_Order 1 Order of FD approximation (1/2)
PredictorType 0 Type of predictor to be used, 0: use current U, 1: use right hand

side, 2: polynomial extrapolation, 3: dense output formula of RK
scheme

PredictorOrder 1 Order of predictor to be used (PredictorType=2)

95

FLEXI Documentation, Release 24.10

Analyze Default Description
CalcErrorNorms T Set true to compute L2 and LInf error norms at analyze step.
AnalyzeToFile F Set true to output result of error norms to a file (CalcEr-

rorNorms=T)
analyze_dt 0.0 Specifies time interval at which analysis routines are called.
nWriteData 1 Interval as multiple of analyze_dt at which HDF5 files (e.g.

State,TimeAvg,Fluc) are written.
NAnalyze Polynomial degree at which analysis is performed (e.g. for L2

errors). Default: 2*N.
AnalyzeExact-
Func

Define exact function used for analyze (e.g. for computing L2
errors). Default: Same as IniExactFunc

AnalyzeRefState Define state used for analyze (e.g. for computing L2 errors). De-
fault: Same as IniRefState

doMeasureFlops T Set true to measure flop count, if compiled with PAPI.
PIDkill -1.0 Kill FLEXI if PID gets above this value (optional)
NCalcPID 1 Compute PID after every Nth timestep.

AnalyzeEqua-
tion

Default Description

CalcBodyForces F Set true to compute body forces at walls
CalcBulkState F Set true to compute the flows bulk quantities
CalcMeanFlux F Set true to compute mean flux through boundaries
CalcWallVelocity F Set true to compute velocities at wall boundaries
CalcTotalStates F Set true to compute total states (e.g. Tt,pt)
CalcTimeAverage F Set true to compute time averages
WriteBodyForces T Set true to write bodyforces to file
WriteBulkState T Set true to write bulk state to file
WriteMeanFlux T Set true to write mean flux to file
WriteWallVeloc-
ity

T Set true to write wall velolcities file

WriteTotalStates T Set true to write total states to file
VarNameAvg Names of variables to be time-averaged
VarNameFluc Names of variables for which Flucs (time-averaged square of the

variable) should be computed. Required for computing actual
fluctuations.

RecordPoints Default Description
RP_inUse F Set true to compute solution history at points defined in record-

points file.
RP_DefFile File containing element-local parametric recordpoint coordinates

and structure.
RP_MaxMemory 100 Maximum memory in MiB to be used for storing recordpoint state

history. If memory is exceeded before regular IO level states are
written to file.

RP_SamplingOffset 1 Multiple of timestep at which recordpoints are evaluated.

96 Chapter 7. Parameter File

BIBLIOGRAPHY

[1] David A. Kopriva and Gregor Gassner. On the quadrature and weak form choices in collocation type
discontinuous galerkin spectral element methods. Journal of Scientific Computing, 44:136–155,
2010.

[2] Florian Hindenlang, Gregor J Gassner, Christoph Altmann, Andrea Beck, Marc Staudenmaier, and
Claus-Dieter Munz. Explicit discontinuous galerkin methods for unsteady problems. Computers &
Fluids, 61:86–93, 2012.

[3] Matthias Sonntag and Claus-Dieter Munz. Efficient parallelization of a shock capturing for dis-
continuous galerkin methods using finite volume sub-cells. Journal of Scientific Computing,
70(3):1262–1289, 2017.

[4] Sebastian Hennemann, Andrés M Rueda-Ramírez, Florian J Hindenlang, and Gregor J Gassner.
A provably entropy stable subcell shock capturing approach for high order split form dg for the
compressible euler equations. Journal of Computational Physics, 426:109935, 2021.

[5] M. Carpenter and C. Kennedy. Fourth-order 2N-storage Runge-Kutta schemes. Technical Report
NASA TM 109111, Langley Research Center, Hampton, Virginia, 1994.

[6] Jens Niegemann, Richard Diehl, and Kurt Busch. Efficient low-storage runge–kutta schemes with
optimized stability regions. Journal of Computational Physics, 231(2):364–372, 2012.

[7] David A Kopriva, Stephen L Woodruff, and M Yousuff Hussaini. Computation of electromagnetic
scattering with a non-conforming discontinuous spectral element method. International journal for
numerical methods in engineering, 53(1):105–122, 2002.

[8] David Flad, Hannes Frank, Andrea D Beck, and Claus-Dieter Munz. A discontinuous galerkin
spectral element method for the direct numerical simulation of aeroacoustics. In 20th AIAA/CEAS
Aeroacoustics Conference, 2740. 2014.

[9] Jan-Reneé Carlson. Inflow/outflow boundary conditions with application to fun3d. Technical Re-
port, Langley Research Center, Hampton, Virginia, 2011.

[10] Gregor J. Gassner, Andrew R. Winters, and David A. Kopriva. Split form nodal discontinuous
Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Com-
put. Phys., 327:39–66, December 2016. doi:10.1016/j.jcp.2016.09.013.

[11] Gregor J Gassner and Andrea D Beck. On the accuracy of high-order discretizations for underre-
solved turbulence simulations. Theoretical and Computational Fluid Dynamics, 27(3-4):221–237,
2013.

[12] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method for the numerical
solution of the compressible Navier-Stokes equations. J. Comput. Phys., 131:267–279, 1997.

97

https://doi.org/10.1016/j.jcp.2016.09.013

FLEXI Documentation, Release 24.10

[13] F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti, and M. Savini. A high-order accurate discontinuous fi-
nite element method fir inviscid an viscous turbomachinery flows. In R. Decuypere and G. Dibelius,
editors, Proceedings of 2nd European Conference on Turbomachinery, Fluid and Thermodynamics,
99–108. Technologisch Instituut, Antwerpen, Belgium, 1997.

[14] Sergio Pirozzoli. Generalized conservative approximations of split convective derivative operators.
Journal of Computational Physics, 229:7180–7190, 2010.

[15] Praveen Chandrashekar. Kinetic energy preserving and entropy stable finite volume schemes
for compressible euler and navier-stokes equations. Communications in Computational Physics,
14:1252–1286, 2013.

[16] Marcel Blind, Min Gao, Daniel Kempf, Patrick Kopper, Marius Kurz, Anna Schwarz, and An-
drea Beck. Towards exascale cfd simulations using the discontinuous galerkin solver flexi. In High
Performance Computing in Science and Engineering '23 (in press). 2024.

[17] Gregor Gassner and David A Kopriva. A comparison of the dispersion and dissipation errors of
gauss and gauss–lobatto discontinuous galerkin spectral element methods. SIAM Journal on Scien-
tific Computing, 33(5):2560–2579, 2011.

[18] Patrick J. Roache. Code Verification by the Method of Manufactured Solutions. Journal of Fluids
Engineering, 124(1):4–10, November 2001.

[19] UKNG Ghia, Kirti N Ghia, and CT Shin. High-re solutions for incompressible flow using the navier-
stokes equations and a multigrid method. Journal of computational physics, 48(3):387–411, 1982.

[20] Zhen Gao, Jan S. Hesthaven, and Tim Warburton. Efficient absorbing layers for weakly compress-
ible flows. 2016. URL: https://infoscience.epfl.ch/handle/20.500.14299/97200.

[21] Geoffrey Ingram Taylor and Albert Edward Green. Mechanism of the production of small eddies
from large ones. Proceedings of the Royal Society of London. Series A - Mathematical and Physical
Sciences, 158(895):499–521, February 1937. doi:10.1098/rspa.1937.0036.

[22] Gary A Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic
conservation laws. Journal of computational physics, 27(1):1–31, 1978.

[23] Per-Olof Persson and Jaime Peraire. Sub-Cell Shock Capturing for Discontinuous Galerkin Meth-
ods. In Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute
of Aeronautics and Astronautics, 2006. doi:10.2514/6.2006-112.

[24] Phillip Colella and Paul R Woodward. The piecewise parabolic method (ppm) for gas-dynamical
simulations. Journal of computational physics, 54(1):174–201, 1984.

[25] Antony Jameson, Wolfgang Schmidt, and Eli Turkel. Numerical solution of the euler equations by
finite volume methods using runge kutta time stepping schemes. In 14th fluid and plasma dynamics
conference, 1259. 1981.

[26] Robert D Moser, John Kim, and Nagi N Mansour. Direct numerical simulation of turbulent channel
flow up to re= 590. Physics of fluids, 11(4):943–945, 1999.

[27] J. Smagorinsky. General circulation experiments with the primitive equations. Monthly Weather
Review, 91(3):99–164, March 1963. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2.

[28] Peter J Schmid, Knud Erik Meyer, and Oliver Pust. Dynamic mode decomposition and proper or-
thogonal decomposition of flow in a lid-driven cylindrical cavity. In 8th International Symposium
on Particle Image Velocimetry, 25–28. 2009.

98 Bibliography

https://infoscience.epfl.ch/handle/20.500.14299/97200
https://doi.org/10.1098/rspa.1937.0036
https://doi.org/10.2514/6.2006-112
https://doi.org/10.1175/1520-0493(1963)091\T1\textless {}0099:gcewtp\T1\textgreater {}2.3.co;2

FLEXI Documentation, Release 24.10

[29] Xiangxiong Zhang and Chi-Wang Shu. On positivity-preserving high order discontinuous galerkin
schemes for compressible euler equations on rectangular meshes. Journal of Computational
Physics, 229(23):8918–8934, 2010. doi:10.1016/j.jcp.2010.08.016.

Bibliography 99

https://doi.org/10.1016/j.jcp.2010.08.016

	Quick Start Guide
	Installation and Setup
	Mesh Generation
	Running FLEXI
	Tools

	Installation
	Prerequisites
	Installing the Dependencies from the Package Repositories
	Additional Configuration

	Obtaining the Source Code
	Compiling the Code
	Running the Code

	Code Overview
	Feature List
	Compiler Options

	Workflow
	Mesh Generation using HOPR
	Build Configuration
	Using CMake Presets
	Manual Configuration

	Parameter File
	Solver Settings
	Initial Conditions
	Boundary Conditions
	Material Properties
	Data Output

	Running the Simulation
	Domain Decomposition
	Choosing the Number of Cores

	Test Case Environment
	Post Processing
	Overview of Toolchain
	Basic Usage

	Tutorials
	Linear Scalar Advection-Diffusion Equation
	Theoretical Background
	Build Configuration
	Mesh Generation
	Simulation Parameters
	Simulation and Results

	Freestream
	Mesh Generation
	Build Configuration
	Simulation Parameters
	Simulation and Results
	Visualization

	Convergence Test
	Manufactured Solution
	Mesh Generation
	Inviscid Convergence Test
	Manufactured Solution
	Compiler Options
	Simulation Parameters
	Simulation and Results

	Viscous Convergence Test
	Manufactured Solution
	Compiler Options
	Simulation Parameters
	Simulation and Results

	Lid-driven Cavity
	Flow Description
	Compiler Options

	Basic Tutorial | Flow at Re=100
	Mesh Generation
	Simulation Parameters
	Output
	Interpolation
	Numerical Mesh
	Equation System

	Temporal Discretization
	Simulation and Results

	Advanced Tutorial | Flow at Re=400
	Mesh Generation
	Custom Initial / Boundary Function
	Simulation Parameters
	Simulation and Results

	Taylor Green Vortex
	Flow description
	Mesh Generation
	Compiler Options
	Simulation Parameters
	Interpolation
	Overintegration
	Kinetic/Entropy Stable Formulations
	Riemann Solvers
	Sub-Grid Scale Model

	Simulation and Results
	Part I: Crashing Simulation
	Part II: Overintegration
	Part III: Split Formulation
	Part VI: Explicit LES model
	Part V: Have Fun!

	SOD Shock Tube
	Mesh Generation
	Build Configuration
	Simulation Parameters
	Finite Volume Shock Capturing

	Simulation and Results
	Visualization

	Double Mach Reflection
	Mesh Generation
	Flow Simulation
	Finite Volume Switching
	Build Configuration
	Simulation Parameters

	Simulation and Results
	Visualization
	Finite Volume Blending
	Build Configuration
	Simulation Parameters

	Simulation and Results
	Visualization

	Plane Turbulent Channel Flow
	Flow description
	Build Configuration
	Mesh Generation
	Simulation Parameters
	Interpolation / Discretization Parameters
	Sub-Grid Scale Modeling

	Simulation and Results
	Part I: Split-DG without Explicit LES Model
	Part II: SplitDG with Explicit LES Model

	Performance Improvements
	Link-Time Optimization

	Flow Around a Cylinder
	Flow Description
	Build Configuration
	Mesh Generation
	Simulation Parameters
	Material Properties
	Boundary Conditions

	Simulation and Results
	Evaluation of the Strouhal Number
	Evaluation of the Separation Angle

	Dynamic Mode Decomposition

	Flow Around a NACA0012 Airfoil
	Flow Description
	Mesh Generation
	Build Configuration
	Simulation Parameters
	Material Properties
	Numerical Setup
	Boundary Conditions

	Simulation and Results
	Lift and Drag Forces
	Wall Velocities
	Visualization
	Sponge Zone

	Restarting the Simulation
	Two-dimensional Computation
	Record Points (Probes)
	Record Points Preparation
	Record Points Usage
	Record Points Post-Processing

	Tools Overview
	POSTI Tools
	POSTI_VISU
	POSTI_SWAPMESH

	Parameter File
	Bibliography

